Design of a Micro Tensile Testing Structure to Restrain Non-Axial Alignment Errors

Author(s):  
Duanqin Zhang ◽  
Jinkui Chu ◽  
Hongyuan Shen

Accurate mechanical properties measurements in the micro scale are very important for the design and the fail-safe analysis of MEMS. And the tensile test, as one of the micromechanical experimental techniques, has the advantage of uniform stress and strain fields. In this paper, a new tensile testing structure is presented to solve the non-axial alignment problem in microscale tensile test. The testing structure integrates the specimen and the suspended spring beams on a chip. The function of the additional spring beams is to balance the non-axial loading component and so the specimen is uniaxial tensile. As the spring constant of the tensile specimen in the axial direction is much smaller than the spring constant of the testing structure in the vertical direction, the spring beams could specimen caused by non-axial force. Meanwhile, the spring constant of the specimen in axial direction is much larger than that of the spring beams in the same direction so that the loading shared in the spring beams can be ignored. The performance of the tensile testing structure is confirmed by FE simulations. When the loading force has 2° angle with the axial direction, the stress distribution of the specimen is almost identical with that of under axial loading. The axial stress of the specimen is considerably uniform. That is to say the specimen is uniaxially tensile, although the loading direction is offset the axial. And the force shared in the suspended spring beams is below 3.2% of the loading force. The tensile testing structure could greatly weaken the errors caused by disalignment, and would have big potential to be used in the microscale tensile test.

2005 ◽  
Vol 127 (2) ◽  
pp. 197-203 ◽  
Author(s):  
Ming Cheng ◽  
Weinong Chen ◽  
Tusit Weerasooriya

Kevlar® KM2 fiber is a transversely isotropic material. Its tensile stress-strain response in the axial direction is linear and elastic until failure. However, the overall deformation in the transverse directions is nonlinear and nonelastic, although it can be treated linearly and elastically in infinitesimal strain range. For a linear, elastic, and transversely isotropic material, five material constants are needed to describe its stress-strain response. In this paper, stress-strain behavior obtained from experiments on a single Kevlar KM2 fiber are presented and discussed. The effects of loading rate and the influence of axial loading on transverse and transverse loading on axial stress-strain responses are also discussed.


2010 ◽  
Vol 132 (7) ◽  
Author(s):  
Hazel Marie ◽  
Yong Zhang ◽  
Jeremy Heffner ◽  
Heath A. Dorion ◽  
Diana L. Fagan

Hernia repair continues to be a problem facing surgeons today, particularly because of the high incidence of reoccurrence. This work presents preliminary data of a pioneering effort to investigate the effect of mesenchymal stromal cells (MSCs) on mechanical property enhancement in full thickness fascial defects. Heparinized MSCs harvested from a rabbit’s tibia/iliac crest were applied to two fascial defects on the rabbit’s abdominal wall, with two other defects acting as controls (no MSCs added). After an 8 week recovery period, the entire abdominal fascia was harvested for mechanical property testing and elastographic strain analysis. Preliminary results from uniaxial tensile testing indicate a significant increase in the modulus of toughness strain energy, with at least a 50% increase in the MSC treated defects as compared with the control defects. Results from the elastographic strain analysis show excellent correlation in the calibration of the elastography to the uniaxial tensile test, with nearly identical moduli of elasticity. In addition, the elastographs clearly show tissue property heterogeneity at all stages of tensile testing. The MSC treated tissue demonstrates promise of enhanced material properties over that of the nontreated tissue; testing and analysis is ongoing. The elastography provides pixel-level description of tissue property variations providing critical information on wound healing effectiveness that would be impossible with other methods. In the ongoing research, optical elastography, in combination with the traditional tensile test and tissue histology, will be used to characterize localized biomechanical properties directly within the defect area and to locate “crack” initiation and propagation sights as the material is strained to rupture.


Author(s):  
Kumarswamy Karpanan ◽  
William Thomas

Failure strain at any point on a structure is not a constant but is a function of several factors, such as stress state, strain rate, and temperature. Failure strain predicted from the uniaxial tensile testing cannot be applied to the bi-axial or tri-axial stress state. ASME Sec VIII-Div-2, and −3 codes give methods to predict the failure strain for multi-axial stress state by considering the triaxiality factor, which is defined as the ratio of mean stress to the equivalent stress. Failure strain predicted by the ASME method (based on the Rice-Tracey ductile failure model) is an exponential curve that relates the failure strain to the triaxiality factor. The ASME VIII-3 method also gives procedures to calculate failure strain for various material types: ferritic, stainless steel, nickel alloy, aluminum, etc. Experimental results of failure strain at various stress states show that the failure strain is not only a function of the triaxiality factor, but also a function of the Lode angle. The Lode angle takes on the value of 1, 0, and −1 for tension, pure shear, and compression stress state, respectively. Experimental data shows that the failure strain is a 3D surface which has an exponential relation with triaxiality and a parabolic relation with the Lode angle. To validate the ASME failure strain prediction, this paper compares experimental failure strain test data from literature with the ASME predictions. The ASME predictions are non-conservative especially for moderately ductile materials such as aluminum and high strength carbon steel. A reduction factor on failure strain for low ductile material is presented using the relation between the R (yield/ultimate) and the stress ratio (shear/tensile stress). The ASME method does not account for the environmental effects while calculating the failure strain. High pressure, high temperature (HPHT) subsea components designed using ASME VIII-3 code are subjected to various environments in subsea, such as seawater, seawater with cathodic protection (CP) and production fluid (crude oil). Experimental data shows that the Elongation (EL) and/or Reduction in Area (RA) from tensile testing decrease in these environments. Therefore, to account for any environment effect on the failure strain, reduced EL and RA can be used to predict the failure strain.


Author(s):  
S. K. Panda ◽  
N. Sreenivasan ◽  
M. L. Kuntz ◽  
Y. Zhou

Laser welding of advanced high strength steels for fabrication of tailor welded blanks is of increasing interest for continued improvements in vehicle performance and safety without an increase in weight. Experimental results have shown that formability of welded dual-phase (DP) steels is significantly reduced by the formation of a softened region in the heat-affected zone (HAZ). In this study, a finite element simulation of welded DP980 samples undergoing transverse uniaxial tensile testing was used to evaluate the effects of soft zone width and strength on formability characteristics. Both the strength and the ductility of laser welded blanks decreased compared with those of unwelded blanks due to the formation of a softened outer-HAZ, where strain localization and final fracture occurred during tensile testing. The magnitude of softening and the width of the HAZ depend on the laser specific energy. It was observed from tensile test experiments and numerical simulations that both a decrease in strength and an increase in width of the softened HAZ were responsible for a decrease in the overall strength and ductility of the welded blanks.


2004 ◽  
pp. 101-114

Abstract Sheet metal forming operations consist of a large family of processes, ranging from simple bending to stamping and deep drawing of complex shapes. Because sheet forming operations are so diverse in type, extent, and rate, no single test provides an accurate indication of the formability of a material in all situations. However, as discussed in this chapter, the uniaxial tensile test is one of the most widely used tests for determining sheet metal formability. This chapter describes the effect of material properties and temperature on sheet metal formability. Information on the types of formability tests is also provided. The chapter discusses the processes involved in uniaxial and plane-strain tensile testing. Examples include the uniaxial tensile test and the plane-strain tensile test which are subsequently described.


2012 ◽  
Vol 236-237 ◽  
pp. 153-157
Author(s):  
Wei Song

Laboratory experiments and numerical simulations, using Particle Flow Code (PFC2D ), were performed to study the behavior of marble under tri-axial loading and pre-existing fissure uniaxial compression. The laboratory tri-axial compression results of marble was analyzed, and the calibration of the micro-properties of BMP (Bonded particle model ) in PFC2D with the test data was carried out successfully. The pre-existing fissure was simulated by smooth joint contact, and the cracking propagation mode of pre-existing fissure was carried out with the calibrated BMP properties and single smooth joint contact. The simulation show that the tensile crack firstly initiated along the vertical direction to pre-existing fissure, and then gradually departs towards the direction of axial stress, and finally develops along the direction of axial during compression. The numerical simulation coincide with our understanding of fracture mechanics.


2002 ◽  
Vol 62 (1) ◽  
pp. 73-81 ◽  
Author(s):  
J. M. García Páez ◽  
A. Carrera ◽  
E. Jorge Herrero ◽  
I. Millán ◽  
A. Rocha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document