Electrokinetic Transport in Micro-Nanofluidic Systems With Sudden-Expansion and Contraction Cross Sections

Author(s):  
Reiyu Chein ◽  
Baogan Chung

In this study, electrokinetic transport in a micro-nanofluidic system is numerically investigated by solving the transient Poisson, Nernst-Planck, and Navier-Stokes equations simultaneously. The system considered is a nanochannel connected with two microchannels at its ends. Under various applied electric potential biases, the effect of concentration polarization on the fluid flow, induced pressure and electric current is examined. By comparing with the Donnan equilibrium condition and electroosmotic flow in microscale dimension, electric body force due to non-zero charge density is the mechanism for producing vortex flow and inducing positive pressure gradient in the anodic side of the system. The diffusive boundary layer thickness is reduced due to the stirring of the generated vortex flow and results in the over-limiting current when the applied electric potential bias is high.

2010 ◽  
Vol 41 (2) ◽  
pp. 92-103 ◽  
Author(s):  
Peggy Zinke ◽  
Nils Reidar Bøe Olsen ◽  
Jim Bogen ◽  
Nils Rüther

A 3D numerical model was used to compute the discharge distribution in the channel branches of Lake Øyeren's delta in Norway. The model solved the Navier–Stokes equations with the k–ɛ turbulence model on a 3D unstructured grid. The bathymetry dataset for the modelling had to be combined from different data sources. The results for three different flow situations in 1996 and 1997 showed a relative accuracy of the computed discharges within the range of 0 to±20% compared with field measurements taken by an ADCP at 13 cross sections of the distributary channels. The factors introducing the most error in the computed results are believed to be uncertainties concerning the bathymetry. A comparison between the computational results of the older morphology data from 1985–1990 and the model morphology from 1995–2004 indicated that morphological changes in this period had already had consequences for the flow distribution in some channels. Other important error sources were the inevitable use of averaged water level gradients because of unavailable water level measurements within the delta.


1984 ◽  
Vol 138 ◽  
pp. 21-52 ◽  
Author(s):  
H. Fasel ◽  
O. Booz

For a wide gap (R1/R2= 0.5) and large aspect ratiosL/d, axisymmetric Taylor-vortex flow has been observed in experiments up to very high supercritical Taylor (or Reynolds) numbers. This axisymmetric Taylor-vortex flow was investigated numerically by solving the Navier–Stokes equations using a very accurate (fourth-order in space) implicit finite-difference method. The high-order accuracy of the numerical method, in combination with large numbers of grid points used in the calculations, yielded accurate and reliable results for large supercritical Taylor numbers of up to 100Tac(or 10Rec). Prior to this study numerical solutions were reported up to only 16Tac. The emphasis of the present paper is placed upon displaying and elaborating the details of the flow field for large supercritical Taylor numbers. The flow field undergoes drastic changes as the Taylor number is increased from just supercritical to 100Tac. Spectral analysis (with respect toz) of the flow variables indicates that the number of harmonics contributing substantially to the total solution increases sharply when the Taylor number is raised. The number of relevant harmonics is already unexpectedly high at moderate supercriticalTa. For larger Taylor numbers, the evolution of a jetlike or shocklike flow structure can be observed. In the axial plane, boundary layers develop along the inner and outer cylinder walls while the flow in the core region of the Taylor cells behaves in an increasingly inviscid manner.


2015 ◽  
Vol 119 (34) ◽  
pp. 19915-19921 ◽  
Author(s):  
E. Mitchell Hopper ◽  
Edith Perret ◽  
Brian J. Ingram ◽  
Hoydoo You ◽  
Kee-Chul Chang ◽  
...  

2019 ◽  
Vol 224 ◽  
pp. 02003
Author(s):  
Andrey Shobukhov

We study a one-dimensional model of the dilute aqueous solution of KCl in the electric field. Our model is based on a set of Nernst-Planck-Poisson equations and includes the incompressible fluid velocity as a parameter. We demonstrate instability of the linear electric potential variation for the uniform ion distribution and compare analytical results with numerical solutions. The developed model successfully describes the stability loss of the steady state solution and demonstrates the emerging of spatially non-uniform distribution of the electric potential. However, this model should be generalized by accounting for the convective movement via the addition of the Navier-Stokes equations in order to substantially extend its application field.


Author(s):  
Subir Bhattacharjee ◽  
Noor Al Quddus

Electrokinetic transport phenomena, such as electroosmosis, streaming potential, electrophoresis, and sedimentation potential, are central to many micro- and nano-channel flows. During continuum modeling of such phenomena, incorporation of the electrical body force term can make the fluid momentum conservation equation highly non-linear. This non-linearity is often ignored in small-scale electrokinetic flow modeling because of our implicit reliance on the linearity of the Stokes equations for low Reynolds number flows. In this paper, ramifications of this non-linear Stokes equation in electrokinetic flows will be described with examples of our recent studies on pressure driven flows through porous media for electrokinetic power generation, electroosmotic flow of charged entities in nanochannels, and flow of DNA through self-assembled porous media under pulsed electric fields.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 454 ◽  
Author(s):  
Ivan D. Rukhlenko ◽  
Syamak Farajikhah ◽  
Charles Lilley ◽  
Andre Georgis ◽  
Maryanne Large ◽  
...  

Analytical modeling of soft pneumatic actuators constitutes a powerful tool for the systematic design and characterization of these key components of soft robotics. Here, we maximize the quasi-static bending angle of a soft pneumatic actuator by optimizing its cross-section for a fixed positive pressure inside it. We begin by formulating a general theoretical framework for the analytical calculation of the bending angle of pneumatic actuators with arbitrary cross-sections, which is then applied to an actuator made of a circular polymer tube and an asymmetric patch in the shape of a hollow-cylinder sector on its outer surface. It is shown that the maximal bending angle of this actuator can be achieved using a wide range of patches with different optimal dimensions and approximately the same cross-sectional area, which decreases with pressure. We also calculate the optimal dimensions of thin and small patches in thin pneumatic actuators. Our analytical results lead to clear design guidelines, which may prove useful for engineering and optimization of the key components of soft robotics with superior features.


Sign in / Sign up

Export Citation Format

Share Document