Heat Transfer Behavior of Aqueous Suspensions of Nano-Diamonds in Turbulent Pipe Flow

Author(s):  
Shuichi Torii ◽  
Wen-Jie Yang

This paper aims to study the convective heat transfer behavior of aqueous suspensions of nano-diamond particles flowing through a horizontal tube heated under constant heat flux condition. Consideration is given to the effect of particle concentration and Reynolds number on heat transfer enhancement. It is found that (i) significant enhancement of heat transfer performance due to suspension of nano-diamond particles in the circular tube flow is observed in comparison with pure water as the working fluid, (ii) the enhancement is intensified with an increase in the Reynolds number and the nano-diamond concentration, and (iii) substantial amplification of heat transfer performance is not attributed purely to the enhancement of thermal conductivity due to suspension of nano-diamond particles.

2009 ◽  
Vol 131 (4) ◽  
Author(s):  
Shuichi Torii ◽  
Wen-Jei Yang

This paper aims to study the convective heat transfer behavior of aqueous suspensions of nanodiamond particles flowing through a horizontal tube heated under a constant heat flux condition. Consideration is given to the effects of particle concentration and Reynolds number on heat transfer enhancement. It is found that (i) significant enhancement of heat transfer performance due to suspension of nanodiamond particles in the circular tube flow is observed in comparison with pure water as the working fluid, (ii) the enhancement is intensified with an increase in the Reynolds number and the nanodiamond concentration, and (iii) substantial amplification of heat transfer performance is not attributed purely to the enhancement of thermal conductivity due to suspension of nanodiamond particles.


2014 ◽  
Vol 22 (01) ◽  
pp. 1450005 ◽  
Author(s):  
SHUICHI TORII

This paper aims to study the convective heat transfer behavior of aqueous suspensions of nanoparticles flowing through a horizontal tube heated under constant heat flux condition. Consideration is given to the effects of particle concentration and Reynolds number on heat transfer enhancement and the possibility of nanofluids as the working fluid in various heat exchangers. It is found that (i) significant enhancement of heat transfer performance due to suspension of nanoparticles in the circular tube flow is observed in comparison with pure water as the working fluid, (ii) enhancement is intensified with an increase in the Reynolds number and the nanoparticles concentration, and (iii) substantial amplification of heat transfer performance is not attributed purely to the enhancement of thermal conductivity due to suspension of nanoparticles.


2014 ◽  
Vol 984-985 ◽  
pp. 1125-1131
Author(s):  
G. Vijayan ◽  
S. Giridharan ◽  
R. Karunakaran

Heat transfer improvement in solar operated devices is one of the key issues of energy saving and compact designs. Researches in heat transfer have been carried out over the past several decades, culminating in the development of the heat transfer techniques used at present. The use of additives is a technique employed to enhance the heat transfer performance of base fluids. Recently, an innovative material, nanosized particle has been used in suspension in conventional heat transfer fluids that changes the heat transfer characteristic. In this project, an attempt has been made to verify change in heat transfer behavior while using nanofluids. For this purpose, a conical solar collector has been designed, constructed using locally available sheet steel. Polyurethane foam material is used as a insulating liner inside the cone. Thin reflective aluminum sheet is used to focus the solar radiation onto the absorbing surface. The main objective of this paper is to study the heat transfer behavior of Al2O3, Cu2O and ZnO nanofluid and especially Al2O3nanofluid of various concentrations in absorber space of conical solar collector. Experimental study was conducted on different days and the data were recorded. The results obtained show that addition of nanoparticles in the base fluid, improve the heat transfer rate.


Author(s):  
P-H Chen ◽  
Z-C Chang

Hundreds of stacked wire screens are used in the regenerator matrix of a common cryocooler. The number of transfer units of such a matrix (denoted as NTUm) may well exceed 60. However, most of the earlier studies reported are limited to studies of regenerators with NTUm values less than 60, as the single-blow method was employed to measure the NTUm value of the regenerator matrix. Furthermore, in these earlier studies, the effect of heat transfer from the working fluid to the external tube and the Joule-Thomson effect were neglected. In the present study, three regenerators having high NTUm values have been constructed and a transient single-blow technique has been employed to measure the friction factor and the heat transfer performance of these regenerators. In addition, an improved model has been adopted to correct the shortcomings of the earlier studies. Empirical correlations have been provided for the relation between the friction factor and Reynolds number and between the Nusselt number and Reynolds number. The correlation with smaller NTUm values agreed well with those reported in earlier studies.


Author(s):  
Kai Xian Cheng ◽  
Zi Hao Foo ◽  
Kim Tiow Ooi

Microscale heat and fluid flow in macro geometries have been made practical in terms of cost and fabrication, by superimposing two macro geometries which are fabricated using readily-available CNC machining methods. Wavy-profile has been proposed to enhance heat transfer performance in the microchannel owing to the simplicity of geometry and feasibility to be fabricated using simple turning process. Experimental studies were conducted on single-phase, forced convective heat transfer using water as the working fluid for the Reynolds number range of 1300 to 4600, for a constant heat flux of 53.0 W/cm2. Three sinusoidal waves with different wavelength and same amplitude are studied to examine the effect of the total number of waves on the heat transfer and hydrodynamic performance within constant microchannel length. The maximum performance index, which evaluates heat transfer performance per unit pumping power, is 1.39, achieved by wavy profile with the shortest wavelength at Reynolds number of 2800. The performance index for all the enhanced microchannels peaks at the Reynolds number range of 2500 to 2800. Beyond that, the performance index is not a strong function of the wavelength. At lower Reynolds numbers, profile with the shortest wavelength achieves substantially higher performance indices, as the increment in pressure drop is accompanied by a comparable increment in heat transfer. Future work includes the introduction of correlations for the implementation of such geometries in industrial heat exchangers.


1993 ◽  
Vol 115 (3) ◽  
pp. 560-567 ◽  
Author(s):  
N. Zhang ◽  
J. Chiou ◽  
S. Fann ◽  
W.-J. Yang

Experiments are performed to determine the local heat transfer performance in a rotating serpentine passage with rib-roughened surfaces. The ribs are placed on the trailing and leading walls in a corresponding posited arrangement with an angle of attack of 90 deg. The rib height-to-hydraulic diameter ratio, e/Dh, is 0.0787 and the rib pitch-to-height ratio, s/e, is 11. The throughflow Reynolds number is varied, typically at 23,000, 47,000, and 70,000 in the passage both at rest and in rotation. In the rotation cases, the rotation number is varied from 0.023 to 0.0594. Results for the rib-roughened serpentine passages are compared with those of smooth ones in the literature. Comparison is also made on results for the rib-roughened passages between the stationary and rotating cases. It is disclosed that a significant enhancement is achieved in the heat transfer in both the stationary and rotating cases resulting from an installation of the ribs. Both the rotation and Rayleigh numbers play important roles in the heat transfer performance on both the trailing and leading walls. Although the Reynolds number strongly influences the Nusselt numbers in the rib-roughened passage of both the stationary and rotating cases, Nuo and Nu, respectively, it has little effect on their ratio Nu/Nuo.


2021 ◽  
Author(s):  
Kyle Hassan ◽  
Robert F. Kunz ◽  
David Hanson ◽  
Michael Manahan

Abstract In this work, we study the heat transfer performance and particle dynamics of a highly mass loaded, compressible, particle-laden flow in a horizontally-oriented pipe using an Eulerian-Eulerian (two-fluid) computational model. An attendant experimental configuration [1] provides the basis for the study. Specifically, a 17 bar co-flow of nitrogen gas and copper powder are modeled with inlet Reynolds numbers of 3×104, 4.5×104, and 6×104 and mass loadings of 0, 0.5, and 1.0. Eight binned particle sizes were modeled to represent the known powder properties. Significant settling of all particle groups are observed leading to asymmetric temperature distributions. Wall and core flow temperature distributions are observed to agree well with measurements. In high Reynolds number cases, the predictions of the multiphase computational model were satisfactorily aligned with the experimental results. Low Reynolds number model predictions were not as consistent with the experimental measurements.


2015 ◽  
Vol 26 (12) ◽  
pp. 1550140 ◽  
Author(s):  
Amin Ebrahimi ◽  
Ehsan Roohi

Flow patterns and heat transfer inside mini twisted oval tubes (TOTs) heated by constant-temperature walls are numerically investigated. Different configurations of tubes are simulated using water as the working fluid with temperature-dependent thermo-physical properties at Reynolds numbers ranging between 500 and 1100. After validating the numerical method with the published correlations and available experimental results, the performance of TOTs is compared to a smooth circular tube. The overall performance of TOTs is evaluated by investigating the thermal-hydraulic performance and the results are analyzed in terms of the field synergy principle and entropy generation. Enhanced heat transfer performance for TOTs is observed at the expense of a higher pressure drop. Additionally, the secondary flow generated by the tube-wall twist is concluded to play a critical role in the augmentation of convective heat transfer, and consequently, better heat transfer performance. It is also observed that the improvement of synergy between velocity and temperature gradient and lower irreversibility cause heat transfer enhancement for TOTs.


Sign in / Sign up

Export Citation Format

Share Document