A Hybrid Modeling Technique for Partially-Known Systems Using Linear Regression and Neural Network

Author(s):  
Andrew J. Joslin ◽  
Chengying Xu

In this paper a hybrid modeling and system identification method, combining linear least squares regression and artificial neural network techniques, is presented to model a type of dynamic systems which have an incomplete analytical model description. This approach in modeling nonlinear, partially-understood systems is particularly useful to the study of manufacturing processes, where the linear regression portion of the hybrid model is established using a known mathematical model for the process and the neural network is constructed using the residuals from the least squares regression, therefore ensuring a more precise process model for the specific machining setup, tooling selection, workpiece properties, etc. In this paper the method is mathematically proven to give regression coefficients close to those which would be found if only a regression had been performed. The modeling method is then simulated for a macro-scale hard turning process, and the result proves the effectiveness of the proposed hybrid modeling method.

2014 ◽  
Vol 952 ◽  
pp. 299-302
Author(s):  
Xiao Hua Zhang ◽  
Hua Ping Li ◽  
Ke Qiao

A hybrid modeling algorithm based on partial least squares and neural network (BP algorithm) is proposed. First it extracts the feature from the original sample sets by partial least squares mehtod, and then the neural network regression using the extraction sets obtained is performed. Thus the hybrid modeling algorithm has the ability of feature extraction. The experiments results on the properties of engineering materials shows that the proposed hybrid algorithm can effectively modeling the properties of engineering materials with merits of dimensions reduction, elimination of noise and multiple correlations between independent variables.


Author(s):  
Mostafa H. Tawfeek ◽  
Karim El-Basyouny

Safety Performance Functions (SPFs) are regression models used to predict the expected number of collisions as a function of various traffic and geometric characteristics. One of the integral components in developing SPFs is the availability of accurate exposure factors, that is, annual average daily traffic (AADT). However, AADTs are not often available for minor roads at rural intersections. This study aims to develop a robust AADT estimation model using a deep neural network. A total of 1,350 rural four-legged, stop-controlled intersections from the Province of Alberta, Canada, were used to train the neural network. The results of the deep neural network model were compared with the traditional estimation method, which uses linear regression. The results indicated that the deep neural network model improved the estimation of minor roads’ AADT by 35% when compared with the traditional method. Furthermore, SPFs developed using linear regression resulted in models with statistically insignificant AADTs on minor roads. Conversely, the SPF developed using the neural network provided a better fit to the data with both AADTs on minor and major roads being statistically significant variables. The findings indicated that the proposed model could enhance the predictive power of the SPF and therefore improve the decision-making process since SPFs are used in all parts of the safety management process.


2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Janet Myhre ◽  
Daniel R. Jeske ◽  
Michael Rennie ◽  
Yingtao Bi

A heteroscedastic linear regression model is developed from plausible assumptions that describe the time evolution of performance metrics for equipment. The inherited motivation for the related weighted least squares analysis of the model is an essential and attractive selling point to engineers with interest in equipment surveillance methodologies. A simple test for the significance of the heteroscedasticity suggested by a data set is derived and a simulation study is used to evaluate the power of the test and compare it with several other applicable tests that were designed under different contexts. Tolerance intervals within the context of the model are derived, thus generalizing well-known tolerance intervals for ordinary least squares regression. Use of the model and its associated analyses is illustrated with an aerospace application where hundreds of electronic components are continuously monitored by an automated system that flags components that are suspected of unusual degradation patterns.


2021 ◽  
Vol 16 ◽  
pp. 155892502110548
Author(s):  
Hongxin Zhu ◽  
Kun Zou ◽  
Wenlan Bao

In recent years, a large number of automatic equipment has been introduced into the chemical fiber filament doffing production line, but the related research on the fully automatic production line technology is not yet mature. At present, it is difficult to collect data due to test costs and confidentiality. This paper proposes to develop a simulation platform for a chemical fiber filament doffing production line, which enables us to effectively obtain data and quantitatively study the relationship between the number of manual interventions and other process parameters of the production line. Considering that the parameter research is a multi-factor problem, an orthogonal test was designed by using SPSS software and was carried out by using a simulation platform. The multiple linear regression (MLR) and the neural network optimized by genetic algorithm were adopted to fit the relationship between the number of manual interventions and other parameters of the production line. The SPSS software was applied to obtain the standardized coefficients of the multiple linear regression fitting and the neural network mean impact value (MIV) algorithm was applied to obtain the magnitude and direction of the impact of different parameters on the number of manual interventions. The above results provide important reference for the design of similar new production lines and for the improvement of old production lines.


Author(s):  
Jatinder Kumar ◽  
Ajay Bansal

The experimental determination of various properties of diesel-biodiesel mixtures is very time consuming as well as tedious process. Any tool helpful in estimation of these properties without experimentation can be of immense utility. In present work, other tools of determination of properties of diesel-biodiesel blends were tried. A traditional statistical technique of linear regression (principle of least squares) was used to estimate the flash point, fire point, density and viscosity of diesel and biodiesel mixtures. A set of seven neural network architectures, three training algorithms along with ten different sets of weight and biases were examined to choose best Artificial Neural Network (ANN) to predict the above-mentioned properties of dieselbiodiesel mixtures. The performance of both of the traditional linear regression and ANN techniques were then compared to check their validity to predict the properties of various mixtures of diesel and biodiesel. Key words: Biodiesel; Artificial Neural Network; Principle of least squares; Diesel; Linear Regression. DOI: 10.3126/kuset.v6i2.4017Kathmandu University Journal of Science, Engineering and Technology Vol.6. No II, November, 2010, pp.98-103


Sign in / Sign up

Export Citation Format

Share Document