Fabrication of Hierarchical Micro-Nano Structures and Structural Coloring Effect of Polymer Substrate

Author(s):  
Woong Ki Jang ◽  
Yong Min Park ◽  
Young Ho Seo ◽  
Byeong Hee Kim

Recently, structural coloring using hierarchical micro-nano structures as a technical field to implement a color without using a chemical colourants and dye is being developed as an attentional technology. The principle of structural coloring is that by the diffraction or multi-interference of light from a material containing a periodic or quasiperiodic structure on the length scale of the wavelength of visible light. For these reason, our research have verified the structural coloring effect on the polymer substrate by fabricate a hierarchical micro-nano structures. Firstly, we have fabricate a nano and hierarchical micro-nano structured mold for verify the structural size effect. Through the replication of structures on the PMMA substrate, we have measured optical properties in the range of visible light. As a results, the surface of nano structured PMMA showed a blue color according to induced the light. Furthermore, color intensity was increased according to increase the aspect ratio and diameter. In contrast, hierarchical micro-nano patterned surface showed iridescent colors.

2020 ◽  
Author(s):  
busenur Aslanoglu ◽  
Ilya Yakavets ◽  
Vladimir Zorin ◽  
Henri-Pierre Lassalle ◽  
Francesca Ingrosso ◽  
...  

Computational tools have been used to study the photophysical and photochemical features of photosensitizers in photodynamic therapy (PDT) –a minimally invasive, less aggressive alternative for cancer treatment. PDT is mainly based by the activation of molecular oxygen through the action of a photoexcited sensitizer (photosensitizer). Temoporfin, widely known as mTHPC, is a second-generation photosensitizer, which produces the cytotoxic singlet oxygen when irradiated with visible light and hence destroys tumor cells. However, the bioavailability of the mostly hydrophobic photosensitizer, and hence its incorporation into the cells, is fundamental to achieve the desired effect on malignant tissues by PDT. In this study, we focus on the optical properties of the temoporfin chromophore in different environments –in <i>vacuo</i>, in solution, encapsulated in drug delivery agents, namely cyclodextrin, and interacting with a lipid bilayer.


2021 ◽  
Vol 9 (14) ◽  
pp. 4971-4977
Author(s):  
Mehmet Emin Kilic ◽  
Kwang-Ryeol Lee

Tetrahexagonal AlN: a novel two-dimensional family for photocatalytic water splitting with exceptional mechanical, electronic, and optical properties.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aadil Ahmad Bhat ◽  
Shakeel Ahmad Khandy ◽  
Ishtihadah Islam ◽  
Radha Tomar

AbstractThe present manuscript aims at the synthesis of cesium based halide perovskite nanostructures and the effect of cobalt doping on the structural, optical, lumnisent, charge storage and photocatalytic properties. In a very first attempt, we report the solvothermal synthesis of Co doped CsPbCl3 nanostructures under subcritical conditions. The structural features were demonstrated by X-ray diffraction (XRD) Surface morphology determined cubic shape of the synthesized particles. Doping is an excellent way to modify the properties of host material in particular to the electronic structure or optical properties. Incorporation of Co2+ ions in the perovskite structure tunes the optical properties of the nanostructures making this perovskite a visible light active material (Eg = 1.6 eV). This modification in the optical behaviour is the result of size effect, the crystallite size of the doped nanostructures increases with cobalt doping concentration. Photolumniscance (PL) study indicated that CsPbCl3 exhibited Blue emission. Thermogravametric analysis (TGA) revealed that the nanostructures are quite stable at elavated temperatures. The electrochemical performance depicts the pseudocapacative nature of the synthesized nanostructures and can used for charge storage devices. The charge storage capability showed direct proportionality with cobalt ion concentration. And Finally the photocatalytic performance of synthesized material shows superior catalytic ability degrading 90% of methylene blue (MB) dye in 180 min under visible light conditions.


2009 ◽  
Vol 79-82 ◽  
pp. 1245-1248 ◽  
Author(s):  
Pei Lin Han ◽  
Xiao Jing Wang ◽  
Yan Hong Zhao ◽  
Chang He Tang

Electronic structure and optical properties of non-metals (N, S, F, P, Cl) -doped cubic NaTaO3 were investigated systematically by density functional theory (DFT). The results showed that the substitution of (N, S, P, Cl) for O in NaTaO3 was effective in narrowing the band-gap relative to the F-doped NaTaO3. The larger red shift of the absorption edge and the higher visible light absorption at about 520 nm were found for the (N and P)-doped NaTaO3. The excitation from the impurity states to the conduction band may account for the red shift of the absorption edge in an electron-deficiency non-metal doped NaTaO3. The obvious absorption in the visible light region for (N and P)-doped NaTaO3 provides an important guidance for the design and preparation of the visible light photoactive materials.


Sign in / Sign up

Export Citation Format

Share Document