Advances in Quality and Productivity in Precision Grinding: A Review of Selected Research

Author(s):  
Xun Chen ◽  
Michael N. Morgan

This paper reviews grinding research led by Professor W Brian Rowe at Liverpool John Moores University and at other establishments previously. Research reviewed extends over fundamentals of grinding processes and machine performance carried out over fifty-five years. Topics range from accuracy in centreless grinding and other grinding processes to grinding machine behaviour and high precision grinding machine design including bearing technology. Research also ranges to high-removal rate grinding processes, surface integrity and intelligent process control. This review highlights progress in selected areas and demonstrates that improving product quality allows improved manufacturing productivity.

2012 ◽  
Vol 516 ◽  
pp. 257-262
Author(s):  
Martin Hünten ◽  
Fritz Klocke ◽  
Olaf Dambon ◽  
Benjamin Bulla

Manufacturing moulds for the wafer-scale replication of precision glass optics sets new demands in terms of grinding tool lifetime and the processes to be applied. This paper will present different approaches to grinding processes and kinematics to machine wafer-scale tungsten carbide moulds with diameters of up to 100 mm and more than 100 single aspheric cavities, each featuring form accuracies in the micron range. The development of these processes will be described and advantages and disadvantages of the approaches derived from practical tests performed on an ultra precision grinding machine (Moore Nanotech 350FG) will be discussed. Finally, a comparison between the developed processes is made where achieved form accuracies and surface topography are analyzed.


2007 ◽  
Vol 359-360 ◽  
pp. 108-112 ◽  
Author(s):  
Song Hua Li ◽  
Yu Hou Wu

This paper deals with the development of a high-efficiency and precision grinding technology for producing HIPSN ceramic bearing races. A new high-speed CNC grinding machine has been developed, which is equipped with a high-speed ceramic spindle with a built-in motor. Extensive experiments have been performed with this new machine to investigate the influence of various process parameters such as wheel speed, work speed, depth of cut, and wheel grit size on material removal rate, surface finish, grinding forces, and so on. The results of these investigations are presented in this paper. With the application of this technology, a low cost production of ceramic bearings race was realized with the most optimized process parameter.


1954 ◽  
Vol 25 (9) ◽  
pp. 865-868 ◽  
Author(s):  
Harry Letaw ◽  
Lawrence M. Slifkin ◽  
William M. Portnoy

2013 ◽  
Vol 813 ◽  
pp. 519-524
Author(s):  
Sang An Ha ◽  
Jei Pil Wang

A purpose of the present study is to derive optimum study factors for removal of heavy metals using combined alternating current electric/magnetic field and electric membranes for the area contaminated with heavy metals in soil or underground water. ORP (Oxidation Reduction Potential) analysis was conducted to determine an intensity of tendency for oxidation or reduction of the samples contaminated with heavy metals, and electrical membrane treatment was used with adjustment of concentrations and voltages of liquid electrode (Na2SO4) to derive a high removal rate. Removal constants were analyzed to be 0.0417, 0.119, 0.1594 when the voltages were 5V, 10V, 15V, respectively, and treatment efficiency was shown to increase as the liquid electrode concentration was increased. Keywords: heavy metals, electric/magnetic field, ORP, electrical membrane


2014 ◽  
Vol 695 ◽  
pp. 384-388
Author(s):  
Nor Azwadi Che Sidik ◽  
A.S. Ahmad Sofianuddin ◽  
K.Y. Ahmat Rajab

In this paper, Constrained Interpolated Profile Method (CIP) was used to simulate contaminants removal from square cavity in channel flow. Predictions were conducted for the range of aspect ratios from 0.25 to 4.0. The inlet parabolic flow with various Reynolds number from 50 to 1000 was used for the whole presentation with the same properties of contaminants and fluid. The obtained results indicated that the percentage of removal increased at high aspect ratio of cavity and higher Reynolds number of flow but it shows more significant changes as increasing aspect ratio rather than increasing Reynolds number. High removal rate was found at the beginning of the removal process.


2021 ◽  
Author(s):  
William Messner ◽  
Christopher A. Hall

2013 ◽  
Vol 690-693 ◽  
pp. 1013-1019
Author(s):  
Xiao Juan Chen ◽  
Liu Chun Yang ◽  
Jun Feng Zhang ◽  
Yan Huang

Calcium sulfate whisker (CSW) was prepared through the method of cooling recrystallization. In an attempt to develop its new application in environmental protection, we investigated the effect of calcination on the material properties and arsenic uptake performance of calcium sulfate whisker anhydrate (CSAW), which was obtained from CSW calcined at 600 °C for 2 h. Moreover, XRD, SEM, optical microscope, and FT-IR were used to characterize CSW samples. It was found that calcination played an important role in the whisker structure through changing the content of crystal water and the morphology. The CSAW material exhibited a high removal rate of As3+/As5+under strongly alkaline condition.


Sign in / Sign up

Export Citation Format

Share Document