High-Efficiency and Precision Grinding Technology of HIPSN All-Ceramic Bearing Race

2007 ◽  
Vol 359-360 ◽  
pp. 108-112 ◽  
Author(s):  
Song Hua Li ◽  
Yu Hou Wu

This paper deals with the development of a high-efficiency and precision grinding technology for producing HIPSN ceramic bearing races. A new high-speed CNC grinding machine has been developed, which is equipped with a high-speed ceramic spindle with a built-in motor. Extensive experiments have been performed with this new machine to investigate the influence of various process parameters such as wheel speed, work speed, depth of cut, and wheel grit size on material removal rate, surface finish, grinding forces, and so on. The results of these investigations are presented in this paper. With the application of this technology, a low cost production of ceramic bearings race was realized with the most optimized process parameter.

2009 ◽  
Vol 416 ◽  
pp. 77-81
Author(s):  
He Wang ◽  
Yu Hou Wu ◽  
Ke Zhang ◽  
Song Hua Li

This paper reports on the wheel wear in high speed grinding silicon nitride used metal bond diamond wheels. The investigation focuses on the relation among grinding force, grinding ratio and wheel wear. Experiments have been performed to investigate the factor of wheel wear such as grinding ratio and grinding force. The results of these investigations are presented in this paper. With the application of this technology, a low cost production and high efficiency of ceramic bearing ring grinding can be realized.


2009 ◽  
Vol 416 ◽  
pp. 51-53
Author(s):  
Ke Zhang ◽  
He Wang ◽  
Yu Hou Wu ◽  
Song Hua Li

In ceramic machining field, the ultimate goal is to keep material surface integrity, dimension precision and max material removal rate synchronously. HIPSN ceramic ring high speed grinding experiments and researches have been performed, by testing and analyzing grinding force, combining grinding motorized spindle dynamic performance with grinding surface roughness, the influences on ceramic machining quality have been discussed. The grinding parameter can be chose in precondition promising machining quality. It possesses guidance significance in low cost, high efficiency precise ceramic parts machining.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1732
Author(s):  
Yuanyuan Yu ◽  
Yongjun Sun ◽  
Jun Zhou ◽  
Aowen Chen ◽  
Kinjal J. Shah

In this study, a high-efficiency magnetic heavy metal flocculant MF@AA was prepared based on carboxymethyl chitosan and magnetic Fe3O4. It was characterized by SEM, FTIR, XPS, XRD and VSM, and the Cu(II) removal rate was used as the evaluation basis for the preparation process. The effects of AMPS content, total monomer concentration, photoinitiator concentration and reaction time on the performance of MF@AA flocculation to remove Cu(II) were studied. The characterization results show that MF@AA has been successfully prepared and exhibits good magnetic induction characteristics. The synthesis results show that under the conditions of 10% AMPS content, 35% total monomer concentration, 0.04% photoinitiator concentration, and 1.5 h reaction time, the best yield of MF@AA is 77.69%. The best removal rate is 87.65%. In addition, the response surface optimization of the synthesis process of MF@AA was performed. The optimal synthesis ratio was finally determined as iron content 6.5%, CMFS: 29.5%, AM: 53.9%, AMPS: 10.1%. High-efficiency magnetic heavy metal flocculant MF@AA shows excellent flocculation performance in removing Cu(II). This research provides guidance and ideas for the development of efficient and low-cost flocculation technology to remove Cu(II) in wastewater.


2014 ◽  
Vol 590 ◽  
pp. 294-298
Author(s):  
Pichai Janmanee ◽  
Somchai Wonthaisong ◽  
Dollathum Araganont

In this study, effect of machining parameters and wear mechanism in milling process of mold steel AISI-P20 and AISI-1050, using 10 mm twin flute type end mill diameter. The experimental results found that characteristics of milling surfaces and wear of the mill end were directly influenced by changes of parameters for all test conditions. As a result, the quality of milling surfaces also changed. However, mould steels which had the good quality surface is AISI-1050, with roughnesses of 2.120 μm. Quality milling surfaces were milled by using the most suitable parameter feed rate of 45 mm/min, a spindle speed of 637 rpm and a cut depth level of 3 mm, for both grades. Moreover, material removal rate and duration of the milling process, the milling end mills affect wear of the edge in every bite when the feed rate is low, high speed and level depth of cut at least. It was found that limited wear less will affect the surface roughness (Ra) represents the good quality surface.


Author(s):  
А.М. САЖНЕВ ◽  
Л.Г. РОГУЛИНА

Приводятся результаты моделирования сверхскоростного буфера тактовых сигналов, выполненного на базе арсенид-галлиевых n-канальных транзисторов в среде OrCAD и полностью отвечающего следующим требованиям: высокие технические характеристики, малые размеры, высокая частота и КПД, гибкость применения. Приведенные поведенческие модели допускают использование любой программной среды по схемотехническому моделированию. The results of simulation of an ultra-high-speed clock signal buffer based on gallium arsenide n-channel transistors in OrCAD are presented, which fully meets the following requirements: high technical characteristics, application flexibility, low cost, small size, high frequency, and high efficiency. The given behavioral models allow the use of any software environment for circuit modeling.


2015 ◽  
Vol 1115 ◽  
pp. 12-15
Author(s):  
Nur Atiqah ◽  
Mohammad Yeakub Ali ◽  
Abdul Rahman Mohamed ◽  
Md. Sazzad Hossein Chowdhury

Micro end milling is one of the most important micromachining process and widely used for producing miniaturized components with high accuracy and surface finish. This paper present the influence of three micro end milling process parameters; spindle speed, feed rate, and depth of cut on surface roughness (Ra) and material removal rate (MRR). The machining was performed using multi-process micro machine tools (DT-110 Mikrotools Inc., Singapore) with poly methyl methacrylate (PMMA) as the workpiece and tungsten carbide as its tool. To develop the mathematical model for the responses in high speed micro end milling machining, Taguchi design has been used to design the experiment by using the orthogonal array of three levels L18 (21×37). The developed models were used for multiple response optimizations by desirability function approach to obtain minimum Ra and maximum MRR. The optimized values of Ra and MRR were 128.24 nm, and 0.0463 mg/min, respectively obtained at spindle speed of 30000 rpm, feed rate of 2.65 mm/min, and depth of cut of 40 μm. The analysis of variance revealed that spindle speeds are the most influential parameters on Ra. The optimization of MRR is mostly influence by feed rate. Keywords:Micromilling,surfaceroughness,MRR,PMMA


2012 ◽  
Vol 468-471 ◽  
pp. 920-923
Author(s):  
Ya Ping Bao ◽  
Li Liu ◽  
Yuan Wang ◽  
Qian Song

This paper introduced a fast fingerprint identification system based on TMS320VC5416 DSP chip and MBF200 solidity fingerprint sensor. It precipitates fingerprint identification device developing into the direction of miniaturization, embedded and automatic.It recommends fingerprint identification system hardware and software design and the main system processing flow, aim at fingerprint identification arithmetic, the influence of system operation speed is being researched at the same time. High-speed data acquisition system is been built in order to achieve a DSP fingerprint identification system with high efficiency and low cost.


Author(s):  
Elias Brassitos ◽  
Constantinos Mavroidis ◽  
Brian Weinberg

Advanced robotics requires a new generation of actuators able to exhibit a number of desirable characteristics ranging from high power density and high efficiency, high positioning resolution, high torque capacity and torsional stiffness, lightweight designs and low-cost packages. In this paper, we present the development and the experimental evaluation of a new actuator, aimed at improving the torque density and mechanical efficiency of actuated robotic joints, and enhancing the portability and effectiveness of robotic systems engaged in biomechanical applications such as rehabilitation robots and wearable exoskeletons. The new actuator, called the Gear Bearing Drive (GBD), consists of a two-stage planetary gear arrangement coupled through the planets and driven by an external rotor brushless motor that is inscribed within the input stage sun gear. This planetary configuration enables for incredible high-speed reductions and allows for embedding the motor directly within the gearbox saving significant space on the actuator length. Our initial experimental prototypes have demonstrated impressive performance with the potential to deliver more than 30Nm of continuous torque with 85% mechanical efficiency and 0.0005 degree of backlash, and up to 200 rpm maximum output speed in a highly compact and robust package.


2019 ◽  
Vol 130 ◽  
pp. 01031 ◽  
Author(s):  
The Jaya Suteja ◽  
Yon Haryono ◽  
Andri Harianto ◽  
Esti Rinawiyanti

Polyacetal is commonly used as bushing material because of its low coefficient of friction and self lubricant characteristics. The polyacetal is machined by using boring process to produce bushing in certain surface roughness. The objectives of this research are to optimize three independent parameters (depth of cut, feed rate and principal cutting edge angle) of boring process of polyacetal using high speed steel tool to achieve the highest material removal rate and the required surface roughness. Response Surface Methodology is used to investigate the influence of the parameters and optimize the boring process. The research shows that the influence of the boring process parameters on polyacetal is similar compared to on metal. The result reveals that the optimum result is achieved by applying the value of depth of cut, feed rate, and principal cutting edge angle is 2.9 × 10–3 m, 0.229 mm rev–1, and 99.1° respectively. By applying these values, the maximum material rate removal achieved in this research is 1263.4 mm3 s–1 and the surface roughness achieved is 1.57 × 10–6 m.


Sign in / Sign up

Export Citation Format

Share Document