Uniaxial High-Speed Micro-Scale 3D Surface Topographical Measurements Using Fringe Projection

Author(s):  
Yi Zheng ◽  
Beiwen Li

Abstract In-situ inspection has drawn many attentions in manufacturing due to the importance of quality assurance. With the rapid growth of additive manufacturing technology, the importance of in-line/in-situ inspections has been raised to a higher level due to many uncertainties that could occur during an additive printing process. Given this, having accurate and robust in-situ monitoring can assist corrective actions for a closed-loop control of a manufacturing process. Contact 3D profilometers such as stylus profilometers or coordinate measuring machines can achieve very high accuracies. However, due to the requirement for physical contact, such methods have limited measurement speeds and may cause damage to the tested surface. Thus, contact methods are not quite suitable for real-time in-situ metrology. Non-contact methods include both passive and active methods. Passive methods (e.g., focus variation or stereo vision) hinges on image-based depth analysis, yet the accuracies of passive methods may be impacted by light conditions of the environment and the texture quality of the surface. Active 3D scanning methods such as laser scanning or structured light are suitable for instant quality inspection due to their ability to conduct a quick non-contact 3D scan of the entire surface of a workpiece. Specifically, the fringe projection technique, as a variation of the structured light technique, has demonstrated significant potential for real-time in-situ monitoring and inspection given its merits of conducting simultaneous high-speed (from 30 Hz real-time to kilohertz high speeds) and high accuracy (tens of μm) measurements. However, high-speed 3D scanning methods like fringe projection technique are typically based on triangulation principle, meaning that the depth information is retrieved by analyzing the triangulation relationship between the light emitter (i.e., projector), the image receiver (i.e., camera) and the tested sample surface. Such measurement scheme cannot reconstruct 3D surfaces where large geometrical variations are present, such as a deep-hole or a stair geometry. This is because large geometrical variations will block the auxiliary light used in the triangulation based methods, which will resultantly cause a shadowed area to occur. In this paper, we propose a uniaxial fringe projection technique to address such limitation. We measured a stair model using both conventional triangulation based fringe projection technique and the proposed method for comparison. Our experiment demonstrates that the proposed uniaxial fringe projection technique can perform high-speed 3D scanning without shadows appearing in the scene. Quantitative testing shows that an accuracy of 35 μm can be obtained by measuring a step-height object using the proposed uniaxial fringe projection system.

Author(s):  
Yi Zheng ◽  
Beiwen Li

Abstract In-situ inspection has drawn many attentions in manufacturing due to the importance of quality assurance. Having an accurate and robust in-situ monitoring can assist corrective actions for a closed-loop control of a manufacturing process. The fringe projection technique, as a variation of the structured light technique, has demonstrated significant potential for real-time in-situ monitoring and inspection given its merits of conducting simultaneous high-speed and high accuracy measurements. However, high-speed 3D scanning methods like fringe projection technique are typically based on triangulation principle, meaning that the depth information is retrieved by analyzing the triangulation relationship between the light emitter (i.e., projector), the image receiver (i.e., camera) and the tested sample surface. Such measurement scheme cannot reconstruct 3D surfaces where large geometrical variations are present, such as a deep-hole or a stair geometry. This is because large geometrical variations will block the auxiliary light used in the triangulation based methods, which will resultantly cause a shadowed area to occur. In this paper, we propose a uniaxial fringe projection technique to address such limitation. We measured a stair model using both conventional triangulation-based fringe projection technique and the proposed method for comparison. Our experiment demonstrates that the proposed uniaxial fringe projection technique can perform high-speed 3D scanning without shadows appearing in the scene. Quantitative testing shows that an accuracy of 1.15% can be obtained using the proposed uniaxial fringe projection system.


Author(s):  
Matteo Bugatti ◽  
Bianca Maria Colosimo

AbstractThe increasing interest towards additive manufacturing (AM) is pushing the industry to provide new solutions to improve process stability. Monitoring is a key tool for this purpose but the typical AM fast process dynamics and the high data flow required to accurately describe the process are pushing the limits of standard statistical process monitoring (SPM) techniques. The adoption of novel smart data extraction and analysis methods are fundamental to monitor the process with the required accuracy while keeping the computational effort to a reasonable level for real-time application. In this work, a new framework for the detection of defects in metal additive manufacturing processes via in-situ high-speed cameras is presented: a new data extraction method is developed to efficiently extract only the relevant information from the regions of interest identified in the high-speed imaging data stream and to reduce the dimensionality of the anomaly detection task performed by three competitor machine learning classification methods. The defect detection performance and computational speed of this approach is carefully evaluated through computer simulations and experimental studies, and directly compared with the performance and computational speed of other existing methods applied on the same reference dataset. The results show that the proposed method is capable of quickly detecting the occurrence of defects while keeping the high computational speed that would be required to implement this new process monitoring approach for real-time defect detection.


2021 ◽  
Author(s):  
Xiao Zhang ◽  
Weijun Shen ◽  
Vignesh Suresh ◽  
Jakob Hamilton ◽  
Li-Hsin Yeh ◽  
...  

Abstract The Direct Energy Deposition (DED) process utilizes laser energy to melt metal powders and deposit them on the substrate layer to manufacture complex metal parts. This study was applied as a remanufacturing and repair process to fix used parts, which reduced unnecessary waste in the manufacturing industry. However, there could be defects generated during the repair, such as porosity or bumpy morphological defects. Traditionally the operator would use a design of experiment (DOE) or simulation method to understand the printing parameters’ influence on the printed part. There are several influential factors: laser power, scanning speed, powder feeding rate, and standoff distance. Each DED machine has a different setup in practice, which results in some uncertainties for the printing results. For example, the nozzle diameter and laser type could be varied in different DED machines. Thus, it was hypothesized that a repair could be more effective if the printing process could be monitored in real-time. In this study, a structured light system (SLS) was used to capture the printing process’s layer-wise information. The SLS system is capable of performing 3D surface scanning with a high-resolution of 10 µm. To determine how much material needs to be deposited, given the initial scanning of the part and allowing the real-time observation of each layer’s information. Once a defect was found in-situ, the DED machine (hybrid machine) would change the tool and remove the flawed layer. After the repair, the nondestructive approach computed tomography (CT) was applied to examine its interior features. In this research, a DED machine using 316L stainless steel was used to perform the repairing process to demonstrate its effectiveness. The lab-built SLS system was used to capture each layer’s information, and CT data was provided for the quality evaluation. The novel manufacturing approach could improve the DED repair quality, reduce the repair time, and promote repair automation. In the future, it has a great potential to be used in the manufacturing industry to repair used parts and avoid the extra cost involved in buying a new part.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jennifer Zehner ◽  
Anja Røyne ◽  
Pawel Sikorski

AbstractBiocementation is commonly based on microbial-induced carbonate precipitation (MICP) or enzyme-induced carbonate precipitation (EICP), where biomineralization of $$\text {CaCO}_{3}$$ CaCO 3 in a granular medium is used to produce a sustainable, consolidated porous material. The successful implementation of biocementation in large-scale applications requires detailed knowledge about the micro-scale processes of $$\text {CaCO}_{3}$$ CaCO 3 precipitation and grain consolidation. For this purpose, we present a microscopy sample cell that enables real time and in situ observations of the precipitation of $$\text {CaCO}_{3}$$ CaCO 3 in the presence of sand grains and calcite seeds. In this study, the sample cell is used in combination with confocal laser scanning microscopy (CLSM) which allows the monitoring in situ of local pH during the reaction. The sample cell can be disassembled at the end of the experiment, so that the precipitated crystals can be characterized with Raman microspectroscopy and scanning electron microscopy (SEM) without disturbing the sample. The combination of the real time and in situ monitoring of the precipitation process with the possibility to characterize the precipitated crystals without further sample processing, offers a powerful tool for knowledge-based improvements of biocementation.


2021 ◽  
Vol 129 (18) ◽  
pp. 183305
Author(s):  
Mário Janda ◽  
Mostafa E. Hassan ◽  
Viktor Martišovitš ◽  
Karol Hensel ◽  
Michal Kwiatkowski ◽  
...  

2002 ◽  
Vol 68 (11) ◽  
pp. 5737-5740 ◽  
Author(s):  
Ariel Maoz ◽  
Ralf Mayr ◽  
Geraldine Bresolin ◽  
Klaus Neuhaus ◽  
Kevin P. Francis ◽  
...  

ABSTRACT Bioluminescent mutants of Yersinia enterocolitica were generated by transposon mutagenesis using a promoterless, complete lux operon (luxCDABE) derived from Photorhabdus luminescens, and their production of light in the cheese environment was monitored. Mutant B94, which had the lux cassette inserted into an open reading frame of unknown function was used for direct monitoring of Y. enterocolitica cells on cheeses stored at 10°C by quantifying bioluminescence using a photon-counting, intensified charge-coupled device camera. The detection limit on cheese was 200 CFU/cm2. Bioluminescence of the reporter mutant was significantly regulated by its environment (NaCl, temperature, and cheese), as well as by growth phase, via the promoter the lux operon had acquired upon transposition. At low temperatures, mutant B94 did not exhibit the often-reported decrease of photon emission in older cells. It was not necessary to include either antibiotics or aldehyde in the food matrix in order to gain quantitative, reproducible bioluminescence data. As far as we know, this is the first time a pathogen has been monitored in situ, in real time, in a “real-product” status, and at a low temperature.


2018 ◽  
Vol 6 (6) ◽  
pp. 1701337 ◽  
Author(s):  
Jiajun Tian ◽  
Yanrong He ◽  
Juntao Li ◽  
Jie Wei ◽  
Gangqiang Li ◽  
...  

2018 ◽  
Vol 112 ◽  
pp. 149-155 ◽  
Author(s):  
Ning Zhang ◽  
Flurin Stauffer ◽  
Benjamin R. Simona ◽  
Feng Zhang ◽  
Zhao-Ming Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document