The FDTD Analysis of Near-Field Response for Microgroove Structure With Standing Wave Illumination for the Realization of Coherent Structured Illumination Microscopy

Author(s):  
Yizhao Guan ◽  
Hiromasa Kume ◽  
Shotaro Kadoya ◽  
Masaki Michihata ◽  
Satoru Takahashi

Abstract Microstructures are widely used in the manufacture of functional surfaces. An optical-based super-resolution, non-invasive method is preferred for the inspection of surfaces with massive microstructures. The Structured Illumination Microscopy (SIM) uses standing-wave illumination to reach optical super-resolution. Recently, coherent SIM is being studied. It can obtain not only the super-resolved intensity distribution but also the phase and amplitude distribution of the sample surface beyond the diffraction limit. By analysis of the phase-depth dependency, the depth measurement for microgroove structures with coherent SIM is expected. FDTD analysis is applied for observing the near-field response of microgroove under the standing-wave illumination. The near-field phase shows depth dependency in this analysis. Moreover, the effects from microgroove width, the incident angle, and the relative position between the standing-wave peak and center of the microgroove are investigated. It is found the near-field phase change can measure depth until 200 nm (aspect ratio 1) with an error of up to 20.4 nm in the case that the microgroove width is smaller than half of the wavelength.

Author(s):  
Yizhao Guan ◽  
Hiromasa Kume ◽  
Shotaro Kadoya ◽  
Masaki Michihata ◽  
Satoru Takahashi

Abstract Microstructures are widely used in the manufacture of functional surfaces. An optical-based super-resolution, non-invasive method is preferred for the inspection of surfaces with massive microstructures. The Structured Illumination Microscopy (SIM) uses standing-wave illumination to reach optical super-resolution. Recently, coherent SIM is being studied. It can obtain not only the super-resolved intensity distribution but also the phase and amplitude distribution of the sample surface beyond the diffraction limit. By analysis of the phase-depth dependency, the depth measurement for microgroove structures with coherent SIM is expected. FDTD analysis is applied for observing the near-field response of microgroove under the standing-wave illumination. The near-field phase shows depth dependency in this analysis. Moreover, the effects from microgroove width, the incident angle, and the relative position between the standing-wave peak and center of the microgroove are investigated. It is found the near-field phase change can measure depth until 200 nm (aspect ratio 1) with an error of up to 20.4 nm in the case that the microgroove width is smaller than half of the wavelength.


Nanophotonics ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ruslan Röhrich ◽  
A. Femius Koenderink

AbstractStructured illumination microscopy (SIM) is a well-established fluorescence imaging technique, which can increase spatial resolution by up to a factor of two. This article reports on a new way to extend the capabilities of structured illumination microscopy, by combining ideas from the fields of illumination engineering and nanophotonics. In this technique, plasmonic arrays of hexagonal symmetry are illuminated by two obliquely incident beams originating from a single laser. The resulting interference between the light grating and plasmonic grating creates a wide range of spatial frequencies above the microscope passband, while still preserving the spatial frequencies of regular SIM. To systematically investigate this technique and to contrast it with regular SIM and localized plasmon SIM, we implement a rigorous simulation procedure, which simulates the near-field illumination of the plasmonic grating and uses it in the subsequent forward imaging model. The inverse problem, of obtaining a super-resolution (SR) image from multiple low-resolution images, is solved using a numerical reconstruction algorithm while the obtained resolution is quantitatively assessed. The results point at the possibility of resolution enhancements beyond regular SIM, which rapidly vanishes with the height above the grating. In an initial experimental realization, the existence of the expected spatial frequencies is shown and the performance of compatible reconstruction approaches is compared. Finally, we discuss the obstacles of experimental implementations that would need to be overcome for artifact-free SR imaging.


Author(s):  
Rainer Heintzmann

This article presents answers to the questions on superresolution and structured illumination microscopy (SIM) as raised in the editorial of this collection of articles ( https://doi.org/10.1098/rsta.2020.0143 ). These answers are based on my personal views on superresolution in light microscopy, supported by reasoning. Discussed are the definition of superresolution, Abbe's resolution limit and the classification of superresolution methods into nonlinear-, prior knowledge- and near-field-based superresolution. A further focus is put on the capabilities and technical aspects of present and future SIM methods. This article is part of the Theo Murphy meeting issue ‘Super-resolution structured illumination microscopy (part 1)’.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yeon Ui Lee ◽  
Junxiang Zhao ◽  
Qian Ma ◽  
Larousse Khosravi Khorashad ◽  
Clara Posner ◽  
...  

AbstractStructured illumination microscopy (SIM) is one of the most powerful and versatile optical super-resolution techniques. Compared with other super-resolution methods, SIM has shown its unique advantages in wide-field imaging with high temporal resolution and low photon damage. However, traditional SIM only has about 2 times spatial resolution improvement compared to the diffraction limit. In this work, we propose and experimentally demonstrate an easily-implemented, low-cost method to extend the resolution of SIM, named speckle metamaterial-assisted illumination nanoscopy (speckle-MAIN). A metamaterial structure is introduced to generate speckle-like sub-diffraction-limit illumination patterns in the near field with improved spatial frequency. Such patterns, similar to traditional SIM, are then used to excite objects on top of the surface. We demonstrate that speckle-MAIN can bring the resolution down to 40 nm and beyond. Speckle-MAIN represents a new route for super-resolution, which may lead to important applications in bio-imaging and surface characterization.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Liliana Barbieri ◽  
Huw Colin-York ◽  
Kseniya Korobchevskaya ◽  
Di Li ◽  
Deanna L. Wolfson ◽  
...  

AbstractQuantifying small, rapidly evolving forces generated by cells is a major challenge for the understanding of biomechanics and mechanobiology in health and disease. Traction force microscopy remains one of the most broadly applied force probing technologies but typically restricts itself to slow events over seconds and micron-scale displacements. Here, we improve >2-fold spatially and >10-fold temporally the resolution of planar cellular force probing compared to its related conventional modalities by combining fast two-dimensional total internal reflection fluorescence super-resolution structured illumination microscopy and traction force microscopy. This live-cell 2D TIRF-SIM-TFM methodology offers a combination of spatio-temporal resolution enhancement relevant to forces on the nano- and sub-second scales, opening up new aspects of mechanobiology to analysis.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Gang Wen ◽  
Simin Li ◽  
Linbo Wang ◽  
Xiaohu Chen ◽  
Zhenglong Sun ◽  
...  

AbstractStructured illumination microscopy (SIM) has become a widely used tool for insight into biomedical challenges due to its rapid, long-term, and super-resolution (SR) imaging. However, artifacts that often appear in SIM images have long brought into question its fidelity, and might cause misinterpretation of biological structures. We present HiFi-SIM, a high-fidelity SIM reconstruction algorithm, by engineering the effective point spread function (PSF) into an ideal form. HiFi-SIM can effectively reduce commonly seen artifacts without loss of fine structures and improve the axial sectioning for samples with strong background. In particular, HiFi-SIM is not sensitive to the commonly used PSF and reconstruction parameters; hence, it lowers the requirements for dedicated PSF calibration and complicated parameter adjustment, thus promoting SIM as a daily imaging tool.


2020 ◽  
Vol 52 (1) ◽  
pp. 369-393
Author(s):  
Minami Yoda

Quantifying submillimeter flows using optical diagnostic techniques is often limited by a lack of spatial resolution and optical access. This review discusses two super-resolution imaging techniques, structured illumination microscopy and total internal reflection fluorescence or microscopy, which can visualize bulk and interfacial flows, respectively, at spatial resolutions below the classic diffraction limits. First, we discuss the theory and applications of structured illumination for optical sectioning, i.e., imaging a thin slice of a flow illuminated over its entire volume. Structured illumination can be used to visualize the interior of multiphase flows such as sprays by greatly reducing secondary scattering. Second, the theory underlying evanescent waves is introduced, followed by a review of how total internal reflection microscopy has been used to visualize interfacial flows over the last 15 years. Both techniques, which are starting to be used in fluid mechanics, could significantly improve quantitative imaging of microscale and macroscale flows.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Karl Zhanghao ◽  
Xingye Chen ◽  
Wenhui Liu ◽  
Meiqi Li ◽  
Yiqiong Liu ◽  
...  

Abstract Fluorescence polarization microscopy images both the intensity and orientation of fluorescent dipoles and plays a vital role in studying molecular structures and dynamics of bio-complexes. However, current techniques remain difficult to resolve the dipole assemblies on subcellular structures and their dynamics in living cells at super-resolution level. Here we report polarized structured illumination microscopy (pSIM), which achieves super-resolution imaging of dipoles by interpreting the dipoles in spatio-angular hyperspace. We demonstrate the application of pSIM on a series of biological filamentous systems, such as cytoskeleton networks and λ-DNA, and report the dynamics of short actin sliding across a myosin-coated surface. Further, pSIM reveals the side-by-side organization of the actin ring structures in the membrane-associated periodic skeleton of hippocampal neurons and images the dipole dynamics of green fluorescent protein-labeled microtubules in live U2OS cells. pSIM applies directly to a large variety of commercial and home-built SIM systems with various imaging modality.


Sign in / Sign up

Export Citation Format

Share Document