Experimental Study on Heat Transfer to Supercritical CO2 Flowing in Vertical Upward Tube at Medium Mass Flux

Author(s):  
Qian Zhang ◽  
Huixiong Li ◽  
Xiangfei Kong ◽  
Jun Zhang ◽  
Xianliang Lei ◽  
...  

An experimental study was performed on heat transfer characteristics of supercritical pressure CO2 (SC-CO2) flowing at medium mass flux conditions in a vertically-upward tube of 16 mm inner diameter at the Heat Transfer and Flow test loop of Supercritical CO2 (HTF-SCO2) in Xi’an Jiaotong University. Experimental parameters included the pressure ranging from 7.5 to 10.5 MPa, the mass flux of 400–600 kg/m2s, and the heat flux of 20–100 kW/m2. Based on the experimental data, effects of mass flux, heat flux and operation pressure on heat transfer characteristics of SC-CO2 were thoroughly discussed. With the decrease of mass flux and increase of heat flux, heat transfer characteristics of SC-CO2 becomes worse and worse. The wall temperature rises to high levels with the occurrence of a wall temperature peak and the wall temperature peak also rises remarkably with the decrease in mass flux and increase in heat flux. Especially, effect of pressures on the heat transfer of SC-CO2 was found to be quite different from that previously reported in literature. When the heat flux is low (such as 30 kW/m2), the HTD was diminished with the increase in pressures, but when the heat flux is up to 50 kW/m2, the HTD is surprisingly intensified by the increase of pressure. The buoyancy effect was considered to explain this distinct influence of pressure on the heat transfer of SC-CO2 by employed a non-dimensional parameter Bu. With the increase of pressure, buoyancy effect was diminished owing to the decrease of density difference between fluids near the wall and the center. When heat flux was lower, the Bu was located between 5×10−6 and 10−4, where buoyancy effect impaired heat transfer, so the heat transfer coefficient increased by rising pressure. But when heat flux was larger, the Bu was above 10−4, where buoyancy effect began to enhance heat transfer, as a result, the heat transfer coefficient was reduced by weakened buoyancy effect because of the increase of pressure. (CSPE)

2014 ◽  
Vol 592-594 ◽  
pp. 1667-1671
Author(s):  
T. Vinoth ◽  
K. Karuppasamy ◽  
D. Santhosh Kumar ◽  
R. Dhanuskodi

In the present work, the heat transfer characteristics of supercritical pressure water are numerically investigated in an upward flow vertical smooth tube. The numerical simulations are carried out by using Ansys-Fluent solver. The objective of the present work is to investigate the effect of heat flux and mass flux on heat transfer characteristics in supercritical water. In order to perform numerical simulation, experimental data of Mokryet al.[2] is considered. Various simulations were carried out for the inlet parameters of temperature 350°C, pressure 240bar; heat flux values ranging from 190 to 884kW/m2and mass flux values ranging from 498 to 1499kg/m2s. Based on the available parameters of heat flux and mass flux, they are segregated as groups with heat flux to mass flux ratios of 0.39 and 0.67. According to computational data, the heat transfer enhancement and heat transfer deterioration phenomenon of supercritical water were analyzed and based on the comparison with experimental data; their occurrence and mechanism were addressed.


2013 ◽  
Vol 774-776 ◽  
pp. 252-257
Author(s):  
Ning Wang ◽  
Jin Zhou ◽  
Yu Pan ◽  
Hui Wang

Heat transfer characteristics of China RP-3 kerosene under supercritical state were experimentally investigated. Results showed that at sub-critical pressures, heat transfer deterioration happens, and the wall temperature rises from approximately 350°C to 750°C. This is thought to be resulted from film boiling when kerosene begins to transfer from liquid to gas. At supercritical pressures, heat transfer enhancement was observed. And it is mainly caused by the sharp increase of specific heat of kerosene when the wall temperature is approaching the critical temperature of kerosene. The heat transfer coefficient doesnt increase with velocity for kerosene, because the thermal properties and residence time of kerosene have changed when velocity is changed.


Author(s):  
Wenyu Wang ◽  
Ziyu Liang ◽  
Li Wan ◽  
Dan Liu ◽  
Dong Yang

In this study, an experimental investigation was carried out to explore the heat transfer characteristics of the smooth water wall tube of an ultra-supercritical circulating fluidized bed (CFB) boiler. The ranges of the test pressure, mass flux, and heat flux were 23–32 MPa, 550–1200 kg·m−2·s−1, and 200–560 kW·m−2, respectively. The material of the tube used in the test was 12 Gr1MoVg. The diameter and wall thickness were 30 and 5.5 mm, respectively. The length of the test section was 2 m. The effects of the pressure, mass flux, heat flux, buoyancy, and flow acceleration on the heat transfer characteristics were analyzed. The formulas of the heat transfer coefficient were fitted, and the existing classical formula was used to evaluate the experimental data. The mechanism of heat transfer enhancement and deterioration of the tube were also investigated. Results showed that at the area of supercritical pressure, the wall temperature gradually increased with the increase of enthalpy in the pseudo-enthalpy region and sharply increased with the increase of enthalpy in the low-enthalpy region (enthalpy < 1200 kJ kg−1) and high-enthalpy region (enthalpy > 2400 kJ kg−1). This phenomenon indicated that heat transfer enhancement occurs near a pseudo-critical point. The increase of heat flux resulted in rapid heat transfer deterioration. Thereafter, the wall temperature rose immediately. The deterioration was delayed with the increase of mass flux and pressure. The effect of buoyancy and flow acceleration on the heat transfer concentrated on the pseudo-critical temperature of the fluid. Among the five selected heat transfer correlations, the Jackson and Bishop correlations agreed well with the experimental data.


Author(s):  
Zhiduo Wang ◽  
Wenhao Zhang ◽  
Zhaofang Liu ◽  
Chen Zhang ◽  
Zhenping Feng

In this paper, unsteady RANS simulations were performed at two hot streak (HS) circumferential positions with inlet turbulence intensity of 5% and 20%. The interacted HS and high mainstream turbulence effects on endwall heat transfer characteristics of a high-pressure (HP) turbine were discussed by analyzing the flow structures and presenting the endwall adiabatic wall temperature, heat transfer coefficient (HTC) and heat flux distributions. The results indicate that both the wall temperature and HTC increase with the turbulence intensity at most stator endwall regions. In addition, the increase of wall temperature plays a greater role than HTC of influencing the wall heat flux. However, higher turbulence intensity decreases the intensity of the stator passage horse-shoe vortex, also the corresponding region HTC and heat flux are reduced. In rotor passage, the variation of HS circumferential position would alter the hub and casing endwall temperature, however, the discrepancy is weakened at higher turbulence. The elevated HS attenuation at higher turbulence results in temperature augmentation at the leading edge of rotor hub and casing endwalls, while temperature decrease after 50% axial chord, thus obtains more uniform temperature distributions on the endwalls. However, the rotor endwall HTC is only augmented significantly at the leading edge on hub endwall, and pressure side and downstream of trailing edge on casing endwall. Variation of HTC and adiabatic wall temperature jointly determines the rotor hub and casing endwall heat flux, and the temperature variation has dominant effects in the most regions. In general, the variation of adiabatic wall temperature and HTC should be considered simultaneously when analyzing the turbine endwall heat transfer characteristics.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7773
Author(s):  
Qinghua Yu ◽  
Yuxiang Peng ◽  
Ciprian Constantin Negoescu ◽  
Yi Wang ◽  
Yongliang Li

The convective heat transfer behavior of supercritical nitrogen (S-N2) has played a significant role in optimizing the design of recently emerging cryogenic cold storage and recovery systems. However, studies on S-N2 heat transfer have been relatively scarce, not to mention that there is a legitimate urge for a robust numerical model to accurately predict and explain S-N2 heat transfer under various working conditions. In this paper, both experimental and numerical studies were conducted for convective heat transfer of S-N2 in a small vertical tube. The results demonstrated that the standard k-ε model performed better for predicting the key heat transfer characteristics of S-N2 than the SST k-ω model. The effects of heat flux and inlet pressure on the heat transfer characteristics under a large mass flux were evaluated. The variation mechanisms of local heat transfer performance were revealed by illustrating radial profiles of thermophysical properties and turbulent parameters of N2. It was found that the local performance variation along the flow direction was mainly determined by the radial profile of specific heat while the variation of the best local performance with the ratio of heat flux to mass flux was mainly determined by the radial profile of turbulent viscosity.


Author(s):  
Ashutosh Kumar Yadav ◽  
Parantak Sharma ◽  
Avadhesh Kumar Sharma ◽  
Mayank Modak ◽  
Vishal Nirgude ◽  
...  

Impinging jet cooling technique has been widely used extensively in various industrial processes, namely, cooling and drying of films and papers, processing of metals and glasses, cooling of gas turbine blades and most recently cooling of various components of electronic devices. Due to high heat removal rate the jet impingement cooling of the hot surfaces is being used in nuclear industries. During the loss of coolant accidents (LOCA) in nuclear power plant, an emergency core cooling system (ECCS) cool the cluster of clad tubes using consisting of fuel rods. Controlled cooling, as an important procedure of thermal-mechanical control processing technology, is helpful to improve the microstructure and mechanical properties of steel. In industries for heat transfer efficiency and homogeneous cooling performance which usually requires a jet impingement with improved heat transfer capacity and controllability. It provides better cooling in comparison to air. Rapid quenching by water jet, sometimes, may lead to formation of cracks and poor ductility to the quenched surface. Spray and mist jet impingement offers an alternative method to uncontrolled rapid cooling, particularly in steel and electronics industries. Mist jet impingement cooling of downward facing hot surface has not been extensively studied in the literature. The present experimental study analyzes the heat transfer characteristics a 0.15mm thick hot horizontal stainless steel (SS-304) foil using Internal mixing full cone (spray angle 20 deg) mist nozzle from the bottom side. Experiments have been performed for the varied range of water pressure (0.7–4.0 bar) and air pressure (0.4–5.8 bar). The effect of water and air inlet pressures, on the surface heat flux has been examined in this study. The maximum surface heat flux is achieved at stagnation point and is not affected by the change in nozzle to plate distance, Air and Water flow rates.


Sign in / Sign up

Export Citation Format

Share Document