A Parametric Experimental Study on the Heat Transfer Characteristics of Supercritical Kerosene in Active Cooling Channels of Scramjets

2013 ◽  
Vol 774-776 ◽  
pp. 252-257
Author(s):  
Ning Wang ◽  
Jin Zhou ◽  
Yu Pan ◽  
Hui Wang

Heat transfer characteristics of China RP-3 kerosene under supercritical state were experimentally investigated. Results showed that at sub-critical pressures, heat transfer deterioration happens, and the wall temperature rises from approximately 350°C to 750°C. This is thought to be resulted from film boiling when kerosene begins to transfer from liquid to gas. At supercritical pressures, heat transfer enhancement was observed. And it is mainly caused by the sharp increase of specific heat of kerosene when the wall temperature is approaching the critical temperature of kerosene. The heat transfer coefficient doesnt increase with velocity for kerosene, because the thermal properties and residence time of kerosene have changed when velocity is changed.

Author(s):  
Qian Zhang ◽  
Huixiong Li ◽  
Xiangfei Kong ◽  
Jun Zhang ◽  
Xianliang Lei ◽  
...  

An experimental study was performed on heat transfer characteristics of supercritical pressure CO2 (SC-CO2) flowing at medium mass flux conditions in a vertically-upward tube of 16 mm inner diameter at the Heat Transfer and Flow test loop of Supercritical CO2 (HTF-SCO2) in Xi’an Jiaotong University. Experimental parameters included the pressure ranging from 7.5 to 10.5 MPa, the mass flux of 400–600 kg/m2s, and the heat flux of 20–100 kW/m2. Based on the experimental data, effects of mass flux, heat flux and operation pressure on heat transfer characteristics of SC-CO2 were thoroughly discussed. With the decrease of mass flux and increase of heat flux, heat transfer characteristics of SC-CO2 becomes worse and worse. The wall temperature rises to high levels with the occurrence of a wall temperature peak and the wall temperature peak also rises remarkably with the decrease in mass flux and increase in heat flux. Especially, effect of pressures on the heat transfer of SC-CO2 was found to be quite different from that previously reported in literature. When the heat flux is low (such as 30 kW/m2), the HTD was diminished with the increase in pressures, but when the heat flux is up to 50 kW/m2, the HTD is surprisingly intensified by the increase of pressure. The buoyancy effect was considered to explain this distinct influence of pressure on the heat transfer of SC-CO2 by employed a non-dimensional parameter Bu. With the increase of pressure, buoyancy effect was diminished owing to the decrease of density difference between fluids near the wall and the center. When heat flux was lower, the Bu was located between 5×10−6 and 10−4, where buoyancy effect impaired heat transfer, so the heat transfer coefficient increased by rising pressure. But when heat flux was larger, the Bu was above 10−4, where buoyancy effect began to enhance heat transfer, as a result, the heat transfer coefficient was reduced by weakened buoyancy effect because of the increase of pressure. (CSPE)


Author(s):  
Kyohei Isobe ◽  
Chungpyo Hong ◽  
Yutaka Asako ◽  
Ichiro Ueno

Numerical simulations were performed to obtain for heat transfer characteristics of turbulent gas flow in micro-tubes with constant wall temperature. The numerical methodology was based on Arbitrary-Lagrangian-Eulerinan (ALE) method to solve compressible momentum and energy equations. The Lam-Bremhorst Low-Reynolds number turbulence model was employed to evaluate eddy viscosity coefficient and turbulence energy. The tube diameter ranges from 100 μm to 400 μm and the aspect ratio of the tube diameter and the length is fixed at 200. The stagnation temperature is fixed at 300 K and the computations were done for wall temperature, which ranges from 305 K to 350 K. The stagnation pressure was chosen in such a way that the flow is in turbulent flow regime. The obtained Reynolds number ranges widely up to 10081 and the Mach number at the outlet ranges from 0.1 to 0.9. The heat transfer rates obtained by the present study are higher than those of the incompressible flow. This is due to the additional heat transfer near the micro-tube outlet caused by the energy conversion into kinetic energy.


Author(s):  
Huimin Tang ◽  
Huiying Wu

In this paper, the silicon-based corrugated microchannels used for the heat transfer enhancement were fabricated by MEMS technology for the first time. Both the flow and convective heat transfer characteristics of the deionized water through these corrugated microchannels were investigated experimentally, and comparisons were performed between corrugated microchannels and straight microchannels with the same cross-sectional aspect ratio (height-to-width ratio) and same hydraulic diameter. Experimental results showed that both the flow friction and Nusselt number in corrugated microchannels increased considerably compared with those in straight microchannels, and this increase became enlarged with the increase in the Reynolds number. With the same pumping power, using corrugated microchannels instead of straight microchannels caused the reduction in the total thermal resistance. The heat transfer enhancement mechanism of the corrugated microchannels was discussed. The results presented in this paper help to design the high efficiency integrated chip cooling system.


Author(s):  
Sandeep R. Pidaparti ◽  
Jacob A. McFarland ◽  
Mark M. Mikhaeil ◽  
Mark H. Anderson ◽  
Devesh Ranjan

Experiments were performed to investigate the effects of buoyancy on heat transfer characteristics of supercritical carbon dioxide in heating mode. Turbulent flows with Reynolds numbers up to 60,000, at operating pressures of 7.5, 8.1, and 10.2 MPa, were tested in a round tube. Local heat transfer coefficients were obtained from measured wall temperatures over a large set of experimental parameters that varied inlet temperature from 20 to 55°C, mass flux from 150 to 350  kg/m2s, and a maximum heat flux of 65  kW/m2. Horizontal, upward, and downward flows were tested to investigate the unusual heat transfer characteristics due to the effect of buoyancy and flow acceleration caused by large variation in density. In the case of upward flow, severe localized deterioration in heat transfer was observed due to reduction in the turbulent shear stress and is characterized by a sharp increase in wall temperature. In the case of downward flow, turbulent shear stress is enhanced by buoyancy forces, leading to an enhancement in heat transfer. In the case of horizontal flow, flow stratification occurred, leading to a circumferential variation in wall temperature. Thermocouples mounted 180° apart on the tube revealed that the wall temperatures on the top side are significantly higher than the bottom side of the tube. Buoyancy factor calculations for all the test cases indicated that buoyancy effects cannot be ignored even for horizontal flow at Reynolds numbers as high as 20,000. Experimentally determined Nusselt numbers are compared to existing correlations available in the literature. Existing correlations predicted the experimental data within ±30%, with maximum deviation around the pseudocritical point.


Sign in / Sign up

Export Citation Format

Share Document