Effect of Dynamic Behaviour of Piles on Offshore Towers Response

Author(s):  
Yasser E. Mostafa ◽  
M. Hesham El Naggar

Pile foundations supporting offshore platforms and marine structures are required to resist dynamic lateral loading due to wind and wave forces. The response of a jacket offshore tower is affected by the foundation flexibility and the nonlinear behaviour of the supporting piles. In the present study, the soil resistance to the pile movement is modeled using dynamic p-y curves and t-z curves to account for soil nonlinearity and energy dissipation through radiation damping. The model also allows separation at the pile soil interface. The wave forces on the tower members and the tower response are calculated in the time domain using a finite element package (ASAS). The tower response is calculated with emphasis placed on the effects of dynamic pile-soil interaction on the tower performance and the forces acting on the piles for a range of wave conditions.

2021 ◽  
Author(s):  
Chungkuk Jin ◽  
Sung-Jae Kim ◽  
MooHyun Kim

Abstract We develop a fully-coupled time-domain hydro-elasticity model for the Submerged Floating Tunnel (SFT) based on the Discrete-Module-Beam (DMB) method. Frequency-domain simulation based on 3D potential theory results in multibody’s hydrodynamic coefficients and excitation forces for tunnel sections. Subsequently, we build the time-domain model with the multibody Cummins equation and external stiffness matrix from the Euler-Bernoulli and Saint-Venant torsion theories. We establish the mooring line model with rod theory and couple components with translational springs at their respective connection locations. We then compare the dynamic motions, wave forces, and mooring tensions between the present and Morison-equation-based elastic models under regular wave excitations at different submergence depths. The present model is especially important for the shallowly submerged tunnel in which the Morison model shows exaggerated motions, especially at high-frequency range.


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4083
Author(s):  
Kong ◽  
Liu ◽  
Su ◽  
Ao ◽  
Chen ◽  
...  

In this work the hydrodynamic performance of a novel wave energy converter configuration was analytically and numerically studied by combining a moonpool and a wave energy buoy, called the moonpool platform–wave energy buoy (MP–WEB). A potential flow, semi-analytical approach was adopted to assess the total (incident, diffraction, radiation) wave forces acting on the device, and the wave capture and energy efficiency performance of this configuration was assessed, both in the time and frequency domain. The performance of the two configurations, single float and double float, were analyzed and compared in terms of diffraction force, added mass radiation force, motion, and power in the frequency domain. Using an impulse response function-based (IRF) method, the frequency domain results were converted in the time domain. The same parameters in the time domain were derived and the main results were confirmed. Wave energy conversion efficiency was significantly increased due to the resonance phenomenon inside the moonpool.


Author(s):  
Jenny M. V. Trumars ◽  
Johan O. Jonsson ◽  
Lars Bergdahl

A phase averaging wave model (SWAN) is used to transform offshore sea states to the near to shore site of an offshore wind energy converter. The supporting structure of the wind turbine consists of a cylindrical monopile, and the wave forces and resulting base moments on it are calculated by Morison’s equation integrating from the bottom to the instantaneous free surface. For that purpose the wave-motion in the time domain at the monopile is realized by a second-order random wave model.


Author(s):  
Meiyan Zou ◽  
Ling Zhu ◽  
Mingsheng Chen

Float-over deck installation involves multi-body interactions under the wave excitations, such as the nonlinear impacts between the barge and deck via the Deck Support Units (DSUs) and between deck and substructure via the Leg Mating Unit (LMUs). These nonlinear impacts can only be analysed in the time-domain. This paper develops an efficient two-body heaving impact model based on the Cummins equation to study the nonlinear impact behaviour of float-over deck installation. In this model, the convolution term of the Cummins equation is replaced by state-space model such that the efficiency of time-domain modelling can be greatly enhanced. Both the DSUs and LMUs, serving as the shock absorbing devices, are modelled as linear compression-only springs with limited carrying capacity. When the carrying capacity of DSU and LMU is reached, direct contact between deck and barge and between deck and substructure are also modelled by using two harder compression-only springs. The established model is applied to study the nonlinear dynamics of the float-over system during the mating stage that is divided into five stages according to the percentage of deck load transferred to the substructure. Bifurcation diagram is also applied to demonstrate the nonlinear behaviour associated with the deck and barge subjected to LMU and DSU impacts. Hard impacts, namely the direct impacts between the deck and barge and between the deck and substructure, together with high frequency vibrations are found to occur at the start and end of the mating stage. The motion pattern of the deck evolving from periodic motions into chaotic motions is identified. In addition, the period-doubling phenomenon is also observed.


2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Baoji Zhang ◽  
Yuhang Sun

In order to calculate the mooring force of a new semi-submerged Ocean Farm quickly and accurately, based on the unsteady time-domain potential flow theory and combined the catenary model, the control equation of mooring cable is established, and the mooring force of the platform under the wave spectrum is calculated. First of all, based on the actual situation of the ocean environment and platform, the mooring design of the platform is carried out, and the failure analysis and sensitivity analysis of the single anchor chain by the time domain coupling method are adopted: including different water depth, cycle, pretension size, anchor chain layout direction and wind speed, etc. The analysis results confirm the reliability of anchoring method. Based on this, the mooring point location of the platform is determined, the force of each anchor chain in the anchoring process is calculated, and the mooring force and the number of mooring cables are obtained for each cable that satisfies the specification, the results of this paper can provide theoretical calculation methods for mooring setting and mooring force calculation of similar offshore platforms.


1981 ◽  
Vol 21 (01) ◽  
pp. 129-140 ◽  
Author(s):  
J.N. Sharma ◽  
R.G. Dean

Abstract Most methods for wave force computation incorporate either the nonlinearities of the ocean surface for a single fundamental component or the random and/or directional characteristics using superposition of linear wave components. One exception is the intuitive "hybrid" method, which combines elements of linear and nonlinear waves. This paper describes and applies a method correct to the second order in wave height for calculating waves and wave forces caused by a directional wave spectrum on an offshore structure.Starting with a prescribed linear spectrum of directional waves, a set of random phases is generated and the second-order spectrum computed with phases defined by all contributing pairs of first-order components. Thus, with one realization of the spectrum complete up to the second order, the wave profile and water particle kinematics can be profile and water particle kinematics can be simulated in the time domain. The wave forces also are computed in the time domain, taking full account of their nonlinear and directional properties. The resulting wave forces at any level vary in direction and magnitude. The total wave forces summed over all piling of a structure are less than those for a unidirectional train of waves with the same one-dimensional spectrum.Several examples are presented to illustrate reductions in maximum wave forces caused by the directional distribution of waves. We found that for a single piling the maximum force decreases by a factor ranging from 1.0 to 0.61 as the directional spread increases from unidirectional to uniformity over a half plane. For a four-pile group on a square array of 300-ft (91.4-m) spacing, the corresponding decrease in the factor is 1.0 to 0.51 for a Bretschneider spectrum with a peak period of approximately 12 seconds. The results of this complete model are compared with the more intuitive and approximate hybrid method and are found to agree quite well. Force spectra are presented and discussed for the inline and transverse directions. Introduction The nonlinearity, randomness, and directionality of a real sea preclude a simple but realistic determination of wave loading on a single- or multiple-pile group. Presently, there are two essentially different but complementary methods for computing wave loadings. One method represents nonlinearities of a single wave composed of a characteristic fundamental period and its higher harmonics. A number period and its higher harmonics. A number of such theories have been-developed. Dalrymple extended the stream function approach of Dean, to waves on a shear current. Some of these theories adequately account for the nonlinearities; however, they avoid the random and directional characteristics of the sea surface. The second method uses the principle of linear superposition of an infinite principle of linear superposition of an infinite number of waves with given frequencies, amplitudes, and directions of propagation but independent phases; the total energy is distributed over a phases; the total energy is distributed over a continuum of frequencies and directions. In this manner, a three-dimensional Gaussian sea can be represented fully. However, ignoring the nonlinearities makes the random Gaussian model unrealistic - especially for large waves. SPEJ P. 129


Author(s):  
Mohammad Reza Khedmati ◽  
Philippe Rigo ◽  
Amirouche Amrane ◽  
Masoud Nazari

In order to traditionally investigate the strength of marine structures, the structure is subjected to a maximum static load. However, the marine structures are usually suffering environmental forces varying with time. Wave forces are the most important time dependent loading that causes fatigue in structural elements and joints. In this paper different methods base on S-N curve and linear elastic failure mechanics are presented. The governing equations and theories that are used in each method are expressed and the application of each method will be discussed. The two main methods of deterministic analyses are: stress-based approach (S-N curve approach) and linear elastic fracture mechanics (LEFM) approaches. These approaches are applicable to different analyzing strategies, ie the first approach is used for cases in which general form of fatigue is dominant, but the latter involves the calculations of reliability as functions of crack geometry and its boundary conditions. The SPD12C jacket platform in South Pars Oil Field is also modeled as a case study and the results of fatigue reliability analysis are presented. In this paper a comprehensive method is presented to accurately predict the reliability of offshore platforms. This method is based on S-N curve and the results are compared with the fatigue life of joints. Due to nonlinear interaction of soil and piles and the other affecting parameters such as flexibility of joints, non Gaussian procedure of loading, and nonlinearity of reaction force, the precise analyzing of stress levels will be impossible and a complex numerical analysis could only give limited information about the statistical properties of stress. In order to perform the fatigue analysis and predicting the cycles of stress SACS was used which is known as a powerful software in designing and analyzing offshore structures [1]. In this paper the whole structure was modeled subjected to different forces such as wave and sea currents. The effects of parameters such as marine growth and interaction of soil and piles are also included. The latter is shown to have a significant effect on determination of fatigue life of the platform.


1984 ◽  
Vol 1 (19) ◽  
pp. 193
Author(s):  
Uwe Sparboom ◽  
Nico Efthimiou ◽  
Andreas Voigt

This paper presents some results of simultaneous full-scale wave kinematic and local force measurements (field and laboratory) on a slender, vertical cylindrical pile (test-section) under shallow water conditions. The usual application of Morison's equation is taken under critical consideration due to the real flow regime near the surf zone. The data were analyzed in the time domain as well as in the amplitude and frequency domain. Two estimation methods for force coefficients were tested and compared.


Sign in / Sign up

Export Citation Format

Share Document