The Spatial Analysis of an Extreme Wave in a Model Basin

Author(s):  
Bas Buchner ◽  
Radboud van Dijk ◽  
Arjan Voogt

As a pilot study into the understanding of the occurrence of extreme waves, the spatial development of an extreme wave (Ac/Hs = 1.59) in a model basin was investigated. This wave occurred in a wave spectrum that was not extremely steep and non-linear. It is observed that the extreme wave develops in less than half the wavelength from a relatively normal wave into an extreme crest. The wave crest stays high and constant over a large distance (almost 75m). Linear dispersion is not able to predict the wave propagation towards the observed extreme wave crest. Second order theory improves the prediction of the crest amplitude, but not enough. The crest amplitude is still underestimated. This is confirmed by the plots of the probability of extremes. The linear Rayleigh distribution underestimates the crest amplitudes. The second order distribution follows the measurements much better, but also in this case typically the highest 10 crests in a 3 hours storm are underestimated.

Author(s):  
Bas Buchner ◽  
George Forristall ◽  
Kevin Ewans ◽  
Marios Christou ◽  
Janou Hennig

The objective of the CresT JIP was ‘to develop models for realistic extreme waves and a design methodology for the loading and response of floating platforms’. Within this objective the central question was: ‘What is the highest (most critical) wave crest that will be encountered by my platform in its lifetime?’ Based on the presented results for long and short-crested numerical, field and basin results in the paper, it can be concluded that the statistics of long-crested waves are different than those of short-crested waves. But also short-crested waves show a trend to reach crest heights above second order. This is in line with visual observations of the physics involved: crests are sharper than predicted by second order, waves are asymmetric (fronts are steeper) and waves are breaking. Although the development of extreme waves within short-crested sea states still needs further investigation (including the counteracting effect of breaking), at the end of the CresT project the following procedure for taking into account extreme waves in platform design is recommended: 1. For the wave height distribution, use the Forristall distribution (Forristall, 1978). 2. For the crest height distribution, use 2nd order distribution as basis. 3. Both the basin and field measurements show crest heights higher than predicted by second order theory for steeper sea states. It is therefore recommended to apply a correction to the second order distribution based on the basin results. 4. Account for the sampling variability at the tail of the distribution (and resulting remaining possibility of higher crests than given by the corrected second order distribution) in the reliability analysis. 5. Consider the fact that the maximum crest height under a complete platform deck can be considerably higher than the maximum crest at a single point.


Author(s):  
Jo̸rgen Juncher Jensen

For bottom-supported offshore structures like oil drilling rigs and oil production platforms, a deterministic design wave approach is often applied using a regular non-linear Stokes’ wave. Thereby, the procedure accounts for non-linear effects in the wave loading but the randomness of the ocean waves is poorly represented, as the shape of the wave spectrum does not enter the wave kinematics. To overcome this problem and still keep the simplicity of a deterministic approach, Tromans, Anaturk and Hagemeijer (1991) suggested the use of a deterministic wave, defined as the expected linear Airy wave, given the value of the wave crest at a specific point in time or space. In the present paper a derivation of the expected second order short-crested wave riding on a uniform current is given. The analysis is based on the second order Sharma and Dean shallow water wave theory and the direction of the main wind direction can make any direction with the current. Numerical results showing the importance of the water depth, the directional spreading and the current on the conditional mean wave profile and the associated wave kinematics are presented. A discussion of the use of the conditional wave approach as design waves is given.


Author(s):  
Jule Scharnke ◽  
Janou Hennig

In a recent paper the effect of variations in calibrated wave parameters on wave crest and height distributions was analyzed (OMAE2010-20304, [1]). Theoretical distribution functions were compared to wave measurements with a variation in water depth, wave seed (group spectrum) and location of measurement for the same initial power spectrum. The wave crest distribution of the shallow water waves exceeded both second-order and Rayleigh distribution. Whereas, in intermediate water depth the measured crests followed the second order distribution. The distributions of the measured waves showed that different wave seeds result in the same wave height and crest distributions. Measured wave heights were lower closer to the wave maker. In this paper the results of the continued statistical analysis of basin waves are presented with focus on wave steepness and their influence on wave height and wave crest distributions. Furthermore, the sampling variability of the presented cases is assessed.


Author(s):  
Alexander V. Babanin

Design criteria in ocean engineering, whether this is one in 50 years or one in 5000 years event, are hardly ever based on measurements, and rather on statistical distributions of relevant metocean properties. Of utmost interest is the tail of these distributions, that is rare events such as the highest waves with low probability. Engineers have long since realised that the superposition of linear waves with narrow-banded spectrum as depicted by the Rayleigh distribution underestimates the probability of extreme wave crests, and is not adequate for wave heights either, which is a critical shortcoming as far as the engineering design is concerned. Ongoing theoretical and experimental efforts have been under way for decades to address this issue. Here, we will concentrate on short-term statistics, i.e. probability of crests/heights of individual waves. Typical approach is to treat all possible waves in the ocean or at a particular location as a single ensemble for which some comprehensive solution can be found. The oceanographic knowledge, however, now indicates that no single and united comprehensive solution is possible. Probability distributions in different physical circumstances should be different, and by combining them together the inevitable scatter is introduced. The scatter and the accuracy will not improve by increasing the bulk data quality and quantity, and it hides the actual distribution of extreme events. The groups have to be separated and their probability distributions treated individually. The paper offers a review of physical conditions, from simple one-dimensional trains of free waves to realistic two-dimensional wind-forced wave fields, in order to understand where different probability distributions can be expected. If the wave trains/fields in the wave records are stable, distributions for the second-order waves should serve well. If modulational instability is active, rare extreme events not predicted by the second-order theory should become possible. This depends on wave steepness, bandwidth and directionality. Mean steepness also defines the wave breaking and therefore the upper limit for wave heights in this group of conditions. Under hurricane-like circumstances, the instability gives way to direct wind forcing, and yet another statistics is to be expected.


2007 ◽  
Vol 7 (1) ◽  
pp. 109-122 ◽  
Author(s):  
G. Ducrozet ◽  
F. Bonnefoy ◽  
D. Le Touzé ◽  
P. Ferrant

Abstract. In the present paper we propose a method for studying extreme-wave appearance based on the Higher-Order Spectral (HOS) technique proposed by West et al. (1987) and Dommermuth and Yue (1987). The enhanced HOS model we use is presented and validated on test cases. Investigations of freak-wave events appearing within long-time evolutions of 2-D and 3-D wavefields in open seas are then realized, and the results are discussed. Such events are obtained in our periodic-domain HOS model by using different kinds of configurations: either i) we impose an initial 3-D directional spectrum with the phases adjusted so as to form a focused forced event after a while, or ii) we let 2-D and 3-D wavefields defined by a directional wave spectrum evolve up to the natural appearance of freak waves. Finally, we investigate the influence of directionality on extreme wave events with an original study of the 3-D shape of the detected freak waves.


2001 ◽  
Vol 124 (1) ◽  
pp. 28-33 ◽  
Author(s):  
George Z. Forristall

Waves in the ocean are nonlinear, random, and directionally spread, but engineering calculations are almost always made using waves that are either linear and random or nonlinear and regular. Until recently, methods for more accurate computations simply did not exist. Increased computer speeds and continued theoretical developments have now led to tools which can produce much more realistic waves for engineering applications. The purpose of this paper is to review some of these developments. The simplest nonlinearities are the second-order bound waves caused by the pairwise interaction of linear components of the wave spectrum. It is fairly easy to simulate the second-order surface resulting from those interactions, a fact which has recently been exploited to estimate the probability distribution of wave crest heights. Once the evolution of the surface is known, the kinematics of the subsurface flow can be evaluated reasonably easily from Laplace’s equation. Much of the bound wave structure can also be captured by using the Creamer transformation, a definite integral over the spatial domain which modifies the structure of the wave field at one instant in time. In some ways, the accuracy of the Creamer transformation is higher than second order. Finally, many groups have developed numerical wave tanks which can solve the nonlinear wave equations to arbitrary accuracy. The computational cost of these solutions is still rather high, but they can directly calculate potential forces on large structures as well as providing test cases for the less accurate, but more efficient, methods.


Author(s):  
Felice Arena ◽  
Alfredo Ascanelli

The interest and studies on nonlinear waves are increased recently for their importance in the interaction with floating and fixed bodies. It is also well-known that nonlinearities influence wave crest and wave trough distributions, both deviating from the Rayleigh law. In this paper, a theoretical crest distribution is obtained, taking into account the extension of Boccotti’s quasideterminism theory (1982, “On Ocean Waves With High Crests,” Meccanica, 17, pp. 16–19), up to the second order for the case of three-dimensional waves in finite water depth. To this purpose, the Fedele and Arena (2005, “Weakly Nonlinear Statistics of High Random Waves,” Phys. Fluids, 17(026601), pp. 1–10) distribution is generalized to three-dimensional waves on an arbitrary water depth. The comparison with Forristall’s second order model (2000, “Wave Crest Distributions: Observations and Second-Order Theory,” J. Phys. Oceanogr., 30(8), pp. 1931–1943) shows the theoretical confirmation of his conclusion: The crest distribution in deep water for long-crested and short-crested waves are very close to each other; in shallow water the crest heights in three-dimensional waves are greater than values given by the long-crested model.


Author(s):  
Mohamed Latheef ◽  
Chris Swan

This paper concerns the statistical distribution of both wave crest elevations and wave heights in deep water. A new set of laboratory observations undertaken in a directional wave basin located in the Hydrodynamics laboratory in the Department of Civil and Environmental Engineering at Imperial College London is presented. The resulting data were analysed and compared to a number of commonly applied statistical distributions. In respect of the wave crest elevations the measured data is compared to both linear and second-order order distributions, whilst the wave heights were compared to the Rayleigh distribution, the Forristall (1978) [1] empirical distribution and the modified Glukhovskiy distribution ([2] and [3]). Taken as a whole, the data confirms that the directionality of the sea state is critically important in determining the statistical distributions. For example, in terms of the wave crest statistics effects beyond second-order are most pronounced in uni-directional seas. However, if the sea state is sufficiently steep, nonlinear effects arising at third order and above can also be significant in directionally spread seas. Important departures from Forristall’s empirical distribution for the wave heights are also identified. In particular, the data highlights the limiting effect of wave breaking in the most severe seas suggesting that many of the commonly applied design solutions may be conservative in terms of crest height and wave height predictions corresponding to a small (10−4) probability of exceedance.


Author(s):  
Peter Tromans ◽  
Luc Vanderschuren ◽  
Kevin Ewans

The statistics of extreme wave crest elevation and wave height have been calculated for realistic, directionally spread sea and swell using a probabilistic method tested and described previously. The non-linearity of steep waves is modelled to second order using Sharma and Dean kinematics and a response surface (reliability type) method is used to deduce the crest elevation or wave height corresponding to a given probability of exceedance. The effects of various combinations of sea and swell are evaluated. As expected, in all cases, non-linearity makes extreme crests higher than the corresponding linear ones. The non-linear effects on wave height are relatively small.


Author(s):  
Peter Tromans ◽  
Luc Vanderschuren ◽  
Kevin Ewans

The statistics of extreme wave crest elevation and wave height have been calculated for realistic, directionally spread sea and swell using a probabilistic method tested and described previously. The nonlinearity of steep waves is modeled to the second order using Sharma and Dean kinematics, and a response surface (reliability type) method is used to deduce the crest elevation or wave height corresponding to a given probability of exceedance. The effects of various combinations of sea and swell are evaluated. As expected, in all cases, nonlinearity makes extreme crests higher than the corresponding linear ones. The nonlinear effects on the wave height are relatively small.


Sign in / Sign up

Export Citation Format

Share Document