Analysis Methodology of Vortex-Induced Motions (VIM) on a Monocolumn Platform Applying the Hilbert-Huang Transform Method

Author(s):  
Rodolfo T. Gonc¸alves ◽  
Guilherme R. Franzini ◽  
Guilherme F. Rosetti ◽  
Andre´ L. C. Fujarra ◽  
Kazuo Nishimoto

Vortex-Induced Motion (VIM) is a highly non-linear dynamic phenomenon. Usual spectral analysis methods, using the Fourier transform, rely on the hypotheses of linear and stationary dynamics. A method to treat non-stationary signals that emerge from non-linear systems is denoted Hilbert-Huang transform method (HHT). The development of an analysis methodology to study the VIM of a MPSO (Monocolumn Production, Storage and Offloading System) using HHT was presented. The purposes of the analysis methodology are to improve the statistics characteristics of VIM. The results showed to be comparable to results obtained from the traditional analysis (mean of the 10% highest peaks) principally for the motions in the transverse direction, although the difference between the results from the traditional analysis for the motions in the in-line direction showed a difference of around 25%. The results from the HHT analysis are more reliable than the traditional ones, owing to the larger number of points to calculate the statistics characteristics. These results should be used to design the risers and mooring lines, as well as to obtain parameters of the VIM to calibrate numerical predictions.

Author(s):  
Rodolfo T. Gonçalves ◽  
Guilherme R. Franzini ◽  
Guilherme F. Rosetti ◽  
André L. C. Fujarra ◽  
Kazuo Nishimoto

Vortex-induced motion (VIM) is a highly nonlinear dynamic phenomenon. Usual spectral analysis methods, using the Fourier transform, rely on the hypotheses of linear and stationary dynamics. A method to treat nonstationary signals that emerge from nonlinear systems is denoted Hilbert–Huang transform (HHT) method. The development of an analysis methodology to study the VIM of a monocolumn production, storage, and offloading system using HHT is presented. The purposes of the present methodology are to improve the statistics analysis of VIM. The results showed to be comparable to results obtained from a traditional analysis (mean of the 10% highest peaks) particularly for the motions in the transverse direction, although the difference between the results from the traditional analysis for the motions in the in-line direction showed a difference of around 25%. The results from the HHT analysis are more reliable than the traditional ones, owing to the larger number of points to calculate the statistics characteristics. These results may be used to design risers and mooring lines, as well as to obtain VIM parameters to calibrate numerical predictions.


2020 ◽  
Author(s):  
Eduardo Arrufat-Pié ◽  
Mario Estévez Báez ◽  
José Mario Estévez Carreras ◽  
Calixto Machado Curbelo ◽  
Gerry Leisman ◽  
...  

AbstractThe fast Fourier transform (FFT), has been the main tool for the EEG spectral analysis (SPA). However, as the EEG dynamics shows nonlinear and non-stationary behavior, results using the FFT approach may result meaningless. A novel method has been developed for the analysis of nonlinear and non-stationary signals known as the Hilbert-Huang transform method. In this study we describe and compare the spectral analyses of the EEG using the traditional FFT approach with those calculated with the Hilbert marginal spectra (HMS) after decomposition of the EEG with a multivariate empirical mode decomposition algorithm. Segments of continuous 60-seconds EEG recorded from 19 leads of 47 healthy volunteers were studied. Although the spectral indices calculated for the explored EEG bands showed significant statistical differences for different leads and bands, a detailed analysis showed that for practical purposes both methods performed substantially similar. The HMS showed a reduction of the alpha activity (−5.64%), with increment in the beta-1 (+1.67%), and gamma (+1.38%) fast activity bands, and also an increment in the theta band (+2.14%), and in the delta (+0.45%) band, and vice versa for the FFT method. For the weighted mean frequencies insignificant mean differences (lower than 1Hz) were observed between both methods for the delta, theta, alpha, beta-1 and beta-2 bands, and only for the gamma band values for the HMS were 3 Hz higher than with the FFT method. The HMS may be considered a good alternative for the SPA of the EEG when nonlinearity or non-stationarity may be present.


2009 ◽  
Vol 413-414 ◽  
pp. 159-166
Author(s):  
Qian Huang ◽  
Dong Xiang Jiang ◽  
Liang You Hong

Many signals of wind turbine faults are non-stationary and have highly complex time-frequency characteristics. Traditional time-frequency analysis method, such as Windowed Fourier Transform method, has no noticeable effect in handing non-stationary signals. Hilbert-Huang Transform (HHT) is a new signal processing method for analyzing the non-stationary mechanical signals. Based on Empirical Mode Decomposition (EMD), the Intrinsic Mode Function (IMF) in HHT can reflect the intrinsic physical characteristics of original data. Moreover, it is a good way to identify the faults involving a breakdown change. First, the principles and advantages of the HHT are presented in detail in this paper. Then, three typical faults of wind turbine rotor, such as rotor imbalance, aerodynamic asymmetry due to blade surface roughness and yaw misalignment are discussed by the HHT. Last, reasonable conclusions are drawn by the comparison between this method and the Wavelet Transform (WT) method with the help of simulation fault signals. The results show the effectiveness of HHT method for diagnosing those faults of wind turbine rotor.


Author(s):  
Maximiliano Bueno-López ◽  
Johinner Mauricio Sanabria Villamizar

The smart grid concept is being applied more and more frequently and this is due to the need to integrate all the components that are part of power systems today, starting from generation units, storage systems, communications and connected loads. Non-linear and non-stationary signals have been obtained in this type of systems, which have high penetration of non-conventional energy sources (NCSRE) and non-linear loads. The power quality criterion has had to be adapted to the new conditions of the electrical systems and this has led to the need to search for new analysis methodologies for the acquired signals. In this article we present a review on non-linear and non-stationary signal analysis methods in electrical systems with high NCSRE penetration. To this end we explore the application of the Hilbert-Huang Transform (HHT), Wavelet Transform (WT) and Wigner-Ville Distribution (WVD), exposing each of the advantages and disadvantages of these methods. To validate the methodology, we have selected some synthetic signals that adequately describe the typical behaviors in these systems.


Author(s):  
James Flinders ◽  
John D. Clemens

ABSTRACT:Most natural systems display non-linear dynamic behaviour. This should be true for magma mingling and mixing processes, which may be chaotic. The equations that most nearly represent how a chaotic natural system behaves are insoluble, so modelling involves linearisation. The difference between the solution of the linearised and ‘true’ equation is assumed to be small because the discarded terms are assumed to be unimportant. This may be very misleading because the importance of such terms is both unknown and unknowable. Linearised equations are generally poor descriptors of nature and are incapable of either predicting or retrodicting the evolution of most natural systems. Viewed in two dimensions, the mixing of two or more visually contrasting fluids produces patterns by folding and stretching. This increases the interfacial area and reduces striation thickness. This provides visual analogues of the deterministic chaos within a dynamic magma system, in which an enclave magma is mingling and mixing with a host magma. Here, two initially adjacent enclave blobs may be driven arbitrarily and exponentially far apart, while undergoing independent (and possibly dissimilar) changes in their composition. Examples are given of the wildly different morphologies, chemical characteristics and Nd isotope systematics of microgranitoid enclaves within individual felsic magmas, and it is concluded that these contrasts represent different stages in the temporal evolution of a complex magma system driven by nonlinear dynamics. If this is true, there are major implications for the interpretation of the parts played by enclaves in the genesis and evolution of granitoid magmas.


Author(s):  
T. Kokkinis ◽  
R. E. Sandstro¨m ◽  
H. T. Jones ◽  
H. M. Thompson ◽  
W. L. Greiner

A number of spars are being installed in deepwater areas in the Gulf of Mexico (GoM), which are subject to loop / eddy current conditions and must be designed for Vortex-Induced Motion (VIM). This paper shows how recent advances in VIM prediction enabled an efficient and effective mooring design solution for the existing Genesis classic spar, which is installed in Green Canyon Block 205 in the GOM. The solution may also be applicable to new spar designs. During the Gulf of Mexico Millennium Eddy Current event in April 2001, the Genesis spar platform underwent vortex induced motions (VIM) which were greater than anticipated during the design of the mooring & riser systems. Analysis showed that if such large motions were to occur in higher currents in the range of the 100-year event, they could cause significant fatigue damage, and could lead to peak tensions in excess of design allowables. After a comprehensive evaluation of potential solutions, Stepped Line Tensioning (SLT) was determined to be the best approach for restoring the platform’s original mooring capacity on technical, cost and schedule grounds. SLT did not require extensive redesign of the existing mooring system of the spar. Furthermore, SLT provided a means to improve mooring integrity on an interim basis, while completing details for permanent implementation. Under SLT, the pretensions of the mooring lines are adjusted based on forecast currents in order to keep the platform below the VIM lock-in threshold at all times and for all eddy/loop current conditions up to and including the 100-year condition. High Reynolds number model tests conducted with a new test methodology were used to get a reliable prediction of the spar’s VIM response for this evaluation.


2021 ◽  
Author(s):  
Hyunchul Jang ◽  
Dae-Hyun Kim ◽  
Madhusuden Agrawal ◽  
Sebastien Loubeyre ◽  
Dongwhan Lee ◽  
...  

Abstract Platform Vortex Induced Motion (VIM) is an important cause of fatigue damage on risers and mooring lines connected to deep-draft semi-submersible floating platforms. The VIM design criteria have been typically obtained from towing tank model testing. Recently, computational fluid dynamics (CFD) analysis has been used to assess the VIM response and to augment the understanding of physical model test results. A joint industry effort has been conducted for developing and verifying a CFD modeling practice for the semi-submersible VIM through a working group of the Reproducible Offshore CFD JIP. The objectives of the working group are to write a CFD modeling practice document based on existing practices validated for model test data, and to verify the written practice by blind calculations with five CFD practitioners acting as verifiers. This paper presents the working group’s verification process, consisting of two stages. In the initial verification stage, the verifiers independently performed free-decay tests for 3-DOF motions (surge, sway, yaw) to check if the mechanical system in the CFD model is the same as in the benchmark test. Additionally, VIM simulations were conducted at two current headings with a reduced velocity within the lock-in range, where large sway motion responses are expected,. In the final verification stage, the verifiers performed a complete set of test cases with small revisions of their CFD models based on the results from the initial verification. The VIM responses from these blind calculations are presented, showing close agreement with the model test data.


Author(s):  
Antonio Carlos Fernandes ◽  
Ronaldo Rosa Rossi

With the introduction of the polyester ropes as mooring lines of large systems such as semi-submersibles, the need to simulate these lines in model tests became a necessity. Although the non-linear behavior is clear, depending on the type of cycling, the polyester rope responds in ways that may be considered linear as a steel wire rope. Because of that, the early model tests have been performed using a linear restoring capability, with different restoring coefficients. The use of equivalent springs seemed the proper way. However, with the help of fundamental investigation on the similarity laws, the present work shows that the use of very thin polyester lines in model scaling is feasible and will indeed allow a closer physical representation. By avoid using springs, but using the same material as in full scale, the same non-linear behavior is present during the tests and even the response to random excitation due to random waves is better represented. The paper closely describes the application of these ideas in a model test of a FPSO (Floating Production Storage and Offloading) comparing both the linear springs and new approach with the model scale equivalent polyester line.


Sign in / Sign up

Export Citation Format

Share Document