Towards the Understanding of Manifold Fluttering During Pendulous Installation: Flow Induced Rotation of Flat Plates in Uniform Flow

Author(s):  
Antonio Carlos Fernandes ◽  
Sina Mirzaei Sefat ◽  
Fabio Moreira Coelho ◽  
Mario Ribeiro

The pendulous installation method of a manifold has a first phase that can be considered as a free fall in water. Of course, this is not free due to the fluid action. The consequence is that the manifold may oscillate rotationally which characterizes a fluttering behavior. However, the manifold is a complex body with non-uniform shape, several modules, porosity etc. Hence, in order to improve the understanding of the fluttering, this work presents advances in the observation of flow induced rotation on a flat plate in uniform flow. This has been started experimentally and subsequently numerical models yielded a confirmation of quasi-steady observations. The experimental results were obtained at the Laborato´rio de Ondas e Correntes (LOC) [Laboratory of Waves and Current] in COPPE/Federal University of Rio de Janeiro. The drag and lift forces coefficients and the center of pressure have been obtained for angles of attack θ = 0°–90° and for different Reynolds numbers.

2013 ◽  
Vol 543 ◽  
pp. 171-175
Author(s):  
Jose Andrés Somolinos ◽  
Rafael Morales ◽  
Carlos Morón ◽  
Alfonso Garcia

In the last years, many analyses from acoustic signal processing have been used for different applications. In most cases, these sensor systems are based on the determination of times of flight for signals from every transducer. This paper presents a flat plate generalization method for impact detection and location over linear links or bars-based structures. The use of three piezoelectric sensors allow to achieve the position and impact time while the use of additional sensors lets cover a larger area of detection and avoid wrong timing difference measurements. An experimental setup and some experimental results are briefly presented.


Author(s):  
Thanesh Deva Asirvatham ◽  
Dara W. Childs ◽  
Stephen Phillips

A flat-plate tester is used to measure the friction-factor behavior for a hole-pattern-roughened surface facing a smooth surface with compressed air as the medium. Measurements of mass flow rate, static pressure drop and stagnation temperature are carried out and used to find a combined (stator + rotor) Fanning friction factor value. In addition, dynamic pressure measurements are made at four axial locations at the bottom of individual holes of the rough plate and at facing locations in the smooth plate. The description of the test rig and instrumentation, and the procedure of testing and calculation are explained in detail in Kheireddin in 2009 and Childs et al. in 2010. Three hole-pattern flat-plates with a hole-pattern diameter of 12.15 mm were tested having depths of 0.9, 1.9, and 2.9 mm. Tests were done with clearances at 0.254, 0.381, and 0.653 mm, and inlet pressures of 56, 70 and 84 bar for a range of pressure ratios, yielding a Reynolds-number range of 100,000 to 800,000. The effects of Reynolds number, clearance, inlet pressure, and hole depth on friction factor are studied. The data are compared to friction factor values of three hole-pattern flat-plates with 3.175 mm diameter holes with hole depths of 1.9, 2.6, and 3.302 mm tested in the same rig described by Kheireddin in 2009. The test program was initiated mainly to investigate a “friction-factor jump” phenomenon cited by Ha et al. in 1992 in test results from a flat-plate tester using facing hole-pattern plates where, at elevated values of Reynolds numbers, the friction factor began to increase steadily with increasing Reynolds numbers. Friction-factor jump was not observed in any of the current test cases.


Author(s):  
Lars Gansel ◽  
Thomas A. McClimans ◽  
Dag Myrhaug

The average flow field inside and around the bottom of porous cylinders in a uniform flow is explored using Particle Image Velocimetry (PIV). Tests were conducted on six cylinders with porosities of 0%, 30%, 60%, 75%, 82% and 90% in a flume tank where the flow field inside and around the models is time averaged over 180 seconds. The models had a height-to-diameter ratio of 3 and were made from metal mesh. The Reynolds numbers ranged from 5,000 to 20,000 based on the diameter of the models and from 75 to 300 based on the diameter of individual strands of the mesh, which corresponds to the Reynolds numbers occurring at salmon fish cage netting used along the Norwegian coast. The porosities of 82%, 75% and 60% correspond to those of a fish cage netting in Norwegian Salmon farming with no, light and heavy biofouling, respectively. The results from this study are discussed with respect to the instantaneous flow field in and around the same cylinders at identical Reynolds numbers. The focus is on the effect of porosity on the ventilation inside the cages and the vertical transports within the near wake. It is shown that heavy fouling of aquacultural nettings can lead to internal circulation inside fish cages and therefore has the potential to reduce the ventilation of the net pens dramatically. The description of the time-averaged flow field inside and around porous cylinders can be used as benchmarks to validate and adjust numerical models of the flow past porous cylinders. The results from this study can be valuable also for the fish farming industry, as bio-fouling and the reduced porosity of fish cages can be monitored and controlled directly by fish farmers.


2011 ◽  
Vol 682 ◽  
pp. 434-459 ◽  
Author(s):  
MARIE RASTELLO ◽  
JEAN-LOUIS MARIÉ ◽  
MICHEL LANCE

A single bubble is placed in a solid-body rotating flow of silicon oil. From the measurement of its equilibrium position, lift and drag forces are determined. Five different silicon oils have been used, providing five different viscosities and Morton numbers. Experiments have been performed over a wide range of bubble Reynolds numbers (0.7 ≤ Re ≤ 380), Rossby numbers (0.58 ≤ Ro ≤ 26) and bubble aspect ratios (1 ≤ χ ≤ 3). For spherical bubbles, the drag coefficient at the first order is the same as that of clean spherical bubbles in a uniform flow. It noticeably increases with the local shear S = Ro−1, following a Ro−5/2 power law. The lift coefficient tends to 0.5 for large Re numbers and rapidly decreases as Re tends to zero, in agreement with existing simulations. It becomes hardly measurable for Re approaching unity. When bubbles start to shrink with Re numbers decreasing slowly, drag and lift coefficients instantaneously follow their stationary curves versus Re. In the standard Eötvös–Reynolds diagram, the transitions from spherical to deformed shapes slightly differ from the uniform flow case, with asymmetric shapes appearing. The aspect ratio χ for deformed bubbles increases with the Weber number following a law which lies in between the two expressions derived from the potential flow theory by Moore (J. Fluid Mech., vol. 6, 1959, pp. 113–130) and Moore (J. Fluid Mech., vol. 23, 1965, pp. 749–766) at low- and moderate We, and the bubble orients with an angle between its minor axis and the direction of the flow that increases for low Ro. The drag coefficient increases with χ, to an extent which is well predicted by the Moore (1965) drag law at high Re and Ro. The lift coefficient is a function of both χ and Re. It increases linearly with (χ − 1) at high Re, in line with the inviscid theory, while in the intermediate range of Reynolds numbers, a decrease of lift with aspect ratio is observed. However, the deformation is not sufficient for a reversal of lift to occur.


Author(s):  
Ali Etebari ◽  
Paisan Atsavapranee ◽  
Christopher Bassler ◽  
Jason Carneal

Measuring and modeling the forces on the appendages of surface ships is important for understanding roll-damping and validating numerical simulations. In recent years, Atsavapranee et al (2007) showed that the bilge keel damping component can be modeled using the flat plate theory established by Keulegan and Carpenter (1958). This model treats the bilge keels as a flat plate that generates viscous damping, as well as added mass. The model comes as an improvement to models used in computational codes used for predicting roll damping, due to the fact that the added mass component is significant. In this study, uncoupled roll motion is investigated to quantify the rudder forces on a fully appended DTMB model #5415 with instrumented appendages at Froude numbers of 0 and 0.138. The objective of the current effort is to decompose the rudder force into its steady, symmetric, and antisymmetric components using Fourier analysis. In the force analysis the rudders are treated as flat plates for the Fr = 0 tests, using the model described by Keulegan and Carpenter (1958). The drag and lift forces are consistent with the flat plate model. The anti-symmetric term, however, does not show a clear trend. For a flat plate model, the anti-symmetric term should resemble a negative sine wave with respect to roll. However, the rudders represent a higher aspect ratio flat plate, and thus require a modification to the added mass formulation. Furthermore, during a normal roll period they tend to interact with the free surface, which can lead to wave damping, which should resemble a positive sine wave with respect to roll. Thus, the two components of the anti-symmetric portion of the signal are superimposed upon one another. In an attempt to decouple these two components, the added mass was artificially removed from the antisymmetric component of the force. This paper will detail the methods used to model the rudder forces for both the standstill and positive Froude number cases.


Author(s):  
Lars C. Gansel ◽  
Thomas A. McClimans ◽  
Dag Myrhaug

The average flow field inside and around the bottom of porous cylinders in a uniform flow is explored using particle image velocimetry (PIV). Tests were conducted on six cylinders with porosities of 0%, 30%, 60%, 75%, 82%, and 90% in a flume tank where the flow field inside and around the models is time averaged over 180 s. The models had a height-to-diameter ratio of 3 and were made from metal mesh. The Reynolds numbers ranged from 5000 to 20,000 based on the diameter of the models and from 75 to 300 based on the diameter of individual strands of the mesh, which corresponds to the Reynolds numbers occurring at salmon fish cage netting used along the Norwegian coast. The porosities of 82%, 75%, and 60% correspond to those of a fish cage netting in Norwegian salmon farming with no, light, and heavy biofouling, respectively. The results from this study are discussed with respect to the instantaneous flow field in and around the same cylinders at identical Reynolds numbers. The focus is on the effect of porosity on the ventilation inside the cages and the vertical transports within the near wake. It is shown that heavy fouling of aquacultural netting can lead to internal circulation inside fish cages and, therefore, has the potential to dramatically reduce the ventilation of the net pens. The description of the time-averaged flow field inside and around porous cylinders can be used as benchmarks to validate and adjust numerical models of the flow past porous cylinders. The results from this study can also be valuable for the fish farming industry, since bio-fouling and the reduced porosity of fish cages can be monitored and controlled directly by fish farmers.


2002 ◽  
Vol 461 ◽  
pp. 277-300 ◽  
Author(s):  
FUMIO TAKEMURA ◽  
SHU TAKAGI ◽  
JACQUES MAGNAUDET ◽  
YOICHIRO MATSUMOTO

The two components of the force acting on a clean almost spherical bubble rising near a plane vertical wall in a quiescent liquid are determined experimentally. This is achieved by using an apparatus in which a CCD camera and a microscope follow the rising bubble. This apparatus allows us to measure accurately the bubble radius, rise speed and distance between the bubble and the wall. Thereby the drag and lift components of the hydrodynamic force are determined for Reynolds numbers Re (based on bubble diameter, rise velocity U, and kinematic viscosity ν) less than 40. The results show the existence of two different regimes, according to the value of the dimensionless separation L* defined as the ratio between the distance from the bubble centre to the wall and the viscous length scale ν/U. When L* is O(1) or more, experimental results corresponding to Reynolds numbers up to unity are found to be in good agreement with an analytical solution obtained in the Oseen approximation by adapting the calculation of Vasseur & Cox (1977) to the case of an inviscid bubble. When L* is o(1), higher-order effects not taken into account in previous analytical investigations become important and measurements show that the deformation of the bubble is significant when the viscosity of the surrounding liquid is large enough. In this regime, experimental results for the drag force and shape of the bubble are found to agree well with recent theoretical predictions obtained by Magnaudet, Takagi & Legendre (2002) but the measured lift force tends to exceed the prediction as the separation decreases.


1951 ◽  
Vol 3 (3) ◽  
pp. 211-229 ◽  
Author(s):  
A.D. Young ◽  
T.B. Booth

SummaryA method is developed for calculating the profile drag of a yawed wing of infinite span, based on the assumption that the form of the spanwise distribution of velocity in the boundary layer, whether laminar or turbulent, is insensitive to the chordwise pressure distribution. The form is assumed to be the same as that accepted for the boundary layer on an unyawed plate with zero external pressure gradient. Experimental evidence indicates that these assumptions are reasonable in this context. The method is applied to a flat plate and the N.A.C.A. 64-012 section at zero incidence for a range of Reynolds numbers between 106 and 108, angles of yaw up to 45°, and a range of transition point positions. It is shown that the drag coefficients of a flat plate varies with yaw as cos½ Λ (where Λ is the angle of yaw) if the boundary layer is completely laminar, and it varies as if the boundary layer is completely turbulent. The drag coefficient of the N.A.C.A. 64-012 section, however, varies closely as cos½ Λ for transition point positions between 0 and 0.5 c. Further calculations on wing sections of other shapes and thicknesses and more detailed experimental checks of the basic assumptions at higher Reynolds numbers are desirable.


2017 ◽  
Vol 10 (2) ◽  
pp. 477-508 ◽  
Author(s):  
C. F.R. SANTOS ◽  
R. C. S. S. ALVARENGA ◽  
J. C. L. RIBEIRO ◽  
L. O CASTRO ◽  
R. M. SILVA ◽  
...  

Abstract This work developed experimental tests and numerical models able to represent the mechanical behavior of prisms made of ordinary and high strength concrete blocks. Experimental tests of prisms were performed and a detailed micro-modeling strategy was adopted for numerical analysis. In this modeling technique, each material (block and mortar) was represented by its own mechanical properties. The validation of numerical models was based on experimental results. It was found that the obtained numerical values of compressive strength and modulus of elasticity differ by 5% from the experimentally observed values. Moreover, mechanisms responsible for the rupture of the prisms were evaluated and compared to the behaviors observed in the tests and those described in the literature. Through experimental results it is possible to conclude that the numerical models have been able to represent both the mechanical properties and the mechanisms responsible for failure.


Sign in / Sign up

Export Citation Format

Share Document