Model Tests of Pipe-Laying Vessel: Results and Analysis

Author(s):  
Alevtina N. Kulikova ◽  
Victor G. Platonov ◽  
Sandro Foce

The paper deals with the physical modeling of kinematic/dynamic characteristics of multi-component systems in a seakeeping basin. The paper presents the results of model seakeeping tests conducted to study the behavior of a combination comprising the barge + stinger + roller + pipe + mooring system in irregular waves under combined wind and current effects in the process of pipe-laying operations. The tests were conducted with variation of wave headings and flexural stiffness of pipeline. The data contained in the paper can be useful for modeling multi-component systems operating at sea. The following abbreviations are used: mooring system – MS, WDF – wave drift forces, CL plane – centerline plane of barge, CoG – center of gravity.

Author(s):  
Kjell Larsen ◽  
Tjerand Vigesdal ◽  
Rune Bjørkli ◽  
Oddgeir Dalane

This paper presents results from extensive small-scale model testing of three semi submersibles together with an overview of damping contributions of low frequency motions. The objectives of the model tests were to verify empirical correction formulas for viscous wave drift forces and to recommend and validate theoretical low frequency damping models. The main parameters of the semis such as displacement, number of columns and diameter of columns were intentionally varied in order to assess the effects on total wave drift forces and corresponding damping. The results show that viscous effects significantly increase the total wave drift forces in extreme sea states. The presence of current increases the effect. As expected, the viscous contribution to wave drift is especially important for semis with slender columns. A revised empirical correction formula for wave drift forces is proposed based on model test results. An overview of the different low frequency damping effects is given. Damping from viscous forces on the hull and damping from the mooring system are the most important sources of damping for the moored semis. A simplified model to calculate mooring system damping is proposed. For accurate prediction of low frequency motions of moored semi submersibles in extreme sea states, a damping level in the range 40–70% of critical damping should be applied for surge and sway when the empirical correction formulas for wave drift forces are applied.


1982 ◽  
Vol 22 (04) ◽  
pp. 563-572
Author(s):  
J.A. Pinkster

Abstract Mean- and low-frequency wave drift forces on moored structures are important with respect to low-frequency motions and peak mooring loads. This paper addresses prediction of these forces on semisubmersible-type structures by use of computations based on three-dimensional (3D) potential theory. The discussion includes a computational method based on direct integration of pressure on the wetted part of the hull of arbitrarily shaped structures. Results of computations of horizontal drift forces on a six-column semisubmersible are compared with model tests in regular and irregular waves. The mean vertical drift forces on a submerged horizontal cylinder obtained from model tests also are compared with results of computations. On the basis of these comparisons, we conclude that wave drift forces on semisubmersible-type structures in conditions of waves without current can be predicted with reasonable accuracy by means of computations based on potential theory. Introduction Stationary vessels floating or submerged in irregular waves are subjected to large first-order wave forces and moments that are linearly proportional to the wave height and that contain the same frequencies as the waves. They also are subjected to small second-order mean- and low- frequency wave forces and moments that are proportional to the square of the wave height. Frequencies of second-order low-frequency components are associated with the frequencies of wave groups occurring in irregular waves.First-order wave forces and moments cause the well-known first-order motions with wave frequencies. First-order wave forces and motions have been investigated for several decades. As a result of these investigations, methods have been developed to predict these forces and moments with reasonable accuracy for many different vessel shapes.For semisubmersibles, which consist of a number of relatively slender elements such as columns, floaters, and bracings, computation methods have been developed to determine the hydrodynamic loads on those elements without accounting for interaction effects between the elements. For the first-order wave loads and motion problem, these computations give accurate results.This paper deals with the mean- and low-frequency second-order wave forces acting on stationary vessels in regular and irregular waves in general and presents a method to predict these forces on the basis of computations.The importance of mean- and low-frequency wave drift forces, from the point of view of motion behavior and mooring loads on vessels moored at point of view of motion behavior and mooring loads on vessels moored at sea, has been recognized only within the last few years. Verhagen and Van Sluijs, Hsu and Blenkarn, and Remery and Hermans showed that the low-frequency components of wave drift forces in irregular waves-even though relatively small in magnitude-can excite large-amplitude low- frequency horizontal motions in moored structures. It was shown for irregular waves that the drift forces contain components with frequencies coinciding with the natural frequencies of the horizontal motions of moored vessels. Combined with minimal damping of low-frequency horizontal motions of moored structures, this leads to large-amplitude resonant behavior of the motions (Fig. 1). Remery and Hermans established that low-frequency components in drift forces are associated with the frequencies of wave groups present in an irregular wave train.The vertical components of the second-order forces sometimes are called suction forces. SPEJ p. 563


Author(s):  
Min-Guk Seo ◽  
Bo Woo Nam ◽  
Yeon-gyu Kim

This paper considers a numerical computation of ship maneuvering performance in waves. For this purpose, modular-type maneuvering model (MMG model) is adopted and wave drift forces and moments are included in maneuvering equation of motion. Wave drift forces ware calculated using a seakeeping program based on higher-order Rankine panel method. When calculating the wave drift force acting on a ship, the forward speed, wave heading, wave period and drift angle of the ship are considered as key parameters. It means that ship’s lateral speed is also included to calculate wave drift force. Numerical simulations are carried out in regular waves using S175 containership and computation results are validated by comparing them with results of free-running model test. Using the developed program, numerical simulation in irregular waves are, also, conducted and discussion is made on the sensitivities of time signal of wave elevation on turning performance.


Author(s):  
Min Zhang ◽  
Junrong Wang ◽  
Junfeng Du ◽  
Nuno Fonseca ◽  
Galin Tahchiev ◽  
...  

Abstract The paper presents calibration and validation of a time domain numerical model for mooring analysis of a spread moored FPSO in moderate seastates with and without current. The equations of motion are solved in the time domain with a fully coupled method, accounting for linear wave frequency (WF) radiation and diffraction, second order wave drift forces and nonlinear low frequency (LF) damping. The mooring system dynamics is solved by a FEM. Uncalibrated numerical models are based on input from the mooring system, vessel mass, radiation/diffraction analysis, decay tests and current coefficients. WF responses are very well predicted by standard radiation/diffraction linear analysis, therefore the focus is on the LF responses. LF motions are underpredicted by the uncalibrated numerical model. Calibration is performed by comparing simulations with model test data and adjusting hydrodynamic coefficients known to be affected by uncertainty. These include wave drift force coefficients and LF damping. Correction of the drift coefficients is based on empirical quadratic transfer functions (QTFs) identified from the test data by a nonlinear data analysis technique known as “cross-bi-spectral analysis”. The LF damping coefficients are then adjusted by matching low frequency surge and sway spectra from the model tests and from the simulations.


Author(s):  
Carl Trygve Stansberg ◽  
Jan Roger Hoff ◽  
Elin Marita Hermundstad ◽  
Rolf Baarholm

The influence from a current on wave drift forces and resulting slowly varying vessel responses can be quite significant. In this paper the effect is reviewed and further investigated. Several works have been published on this complex topic during the last 20–25 years, while it is only to a little extent taken consistently into account in standard industry tools. Simplified methods are often used, if any, and /or empirical correction from model test data. Thus there is a need to improve standard tools in this respect. The effects on slowly varying vessel motions and resulting extreme mooring line loads are demonstrated through time series sequences from selected, previous model tests with FPSO’s and semisubmersibles in steep irregular waves. Wave-current interaction effects that can be larger than the effects from current and wind alone are identified. It is also confirmed from these examples that extreme mooring forces usually occur due to extreme slow-drift motions. An overview description is given of a new, general numerical potential theory code for industry use, MULDIF-2, where wave-current-structure interaction is consistently included as a basic element in the formulation. Main items in the approach are addressed and referred to previous works in the literature. Results from an initial comparison against previous results on drift forces on a vertical column are given, and a good agreement is found. Further verification and validation work is in progress.


Author(s):  
Shunji Sunahara

An estimation of the wave drift forces acting on a semi-submersible type Mega-float supported by very many columns is very important in order to design its mooring system. It is known that the wave drift forces acting on a train of multiple vertical circular cylinders may be determined using the potential flow theory. However, it has recently been reported that the large wave drift forces acting on a large scale model of a semi-submersible type Mega-float, comprised of many simple circular cylinders, for long wave periods, cannot be explained by the potential flow theory. In addition the forces seem to have a significant influence on the design of its mooring system. At first, it seemed that the measured forces were viscous drift forces. The viscous drift forces are in proportion to the square of the wave particle velocity or the cube of the wave height. Of course, the existence of viscous drift forces has already been established, but it was considered that the forces acting are conditional in that the flow is apt to shed, for example on complex under-water shapes, on radiation problem, in larger height or longer period waves. Also it was thought that the forces acting on simple circular cylinders were negligibly small from the viewpoint of engineering applications. Finally, it was not accurately verified that the forces were viscous drift forces. In this study, model tests were carried out. The wave loads acting on a 16-column platform model and the hydrodynamic forces acting on each column of the model were simultaneously measured. The contribution of the viscous drift force component on the wave drift force acting on a train of vertical circular cylinders was also investigated in detail. It was confirmed that significant viscous drift forces act on circular cylinders for long wave periods. Furthermore an applicable region of viscous and potential components of the wave drift forces acting on vertical circular cylinders was obtained.


2018 ◽  
Vol 74 ◽  
pp. 170-187 ◽  
Author(s):  
J. Sanchez-Mondragon ◽  
A.O. Vázquez-Hernández ◽  
S.K. Cho ◽  
H.G. Sung

Author(s):  
Nuno Fonseca ◽  
Ricardo Pascoal ◽  
Joa˜o Marinho ◽  
Tiago Morais

Wave drift forces acting on floating wave energy converters (WEC) are often the most important loading component for the design of the mooring system. On one hand these forces may be, at least, one order of magnitude larger than wind and current forces, and on the other hand the floating structure and mooring system may respond dynamically to the slowly varying wave drift forces. The paper presents an analysis of the wave drift forces on an articulated floating wave energy converter. Particular attention is given to the effects of the wave energy extraction on the time history of the horizontal drift forces. The hydrodynamic calculations are carried out by a frequency domain Green function panel method, resulting on the transfer function of the WEC motions as well as the transfer function of the mean drift forces. The power takeoff system is represented by a simple linear model where the extracted power is related to the relative velocity in the articulation and the damper of the PTO. With the transfer function of the mean drift forces, the variance spectrum of these same forces is calculated for stationary irregular seastates, and finally time histories of the drift forces are produced for typical operational conditions.


Sign in / Sign up

Export Citation Format

Share Document