scholarly journals Marine Scour and Offshore Wind: Lessons Learnt and Future Challenges

Author(s):  
John M. Harris ◽  
Richard J. S. Whitehouse ◽  
James Sutherland

The drive for developing marine offshore renewables has led to specific requirements for scour hazard assessment relating to the associated foundation structures and the cabling necessary for in-field transmission and power export. To date within the United Kingdom (UK) a number of demonstrator projects have been constructed covering wind, wave and tidal generation. However, only offshore wind has been developed at large-scale at present as part of two rounds of commercial development of offshore wind farms (OWFs). In June 2008, The Crown Estate, responsible for licensing seabed use, announced proposals for a third round of offshore wind farms to develop an additional 25 GW of energy to the 8 GW already planned for under Rounds 1 and 2. The size of these Round 3 developments will vary, but the largest of these zones will involve the construction of around 2500 seabed foundation structures. Under Round 1 and 2 developments monopile and jacket type foundations have been used, although several other European (non UK) wind farms have been built using gravity base foundations. For a wind turbine the foundations may account for up to 35% of the installed cost. Therefore, one of the future challenges for large volume installation of offshore wind is the control and minimization of these costs. For tidal energy devices one of the principal requirements for many of the devices proposed is their placement in areas of strong tidal energy, and this has implications not only for the stability of the foundation option, but also for the construction methodology. Similarly wave energy devices are designed to be located in shallow, coastal environments as either floating or bottom mounted systems. These devices, by design, are intended to be located in environments with strong wave action. This may be substantial during storm events, which has implications for the integrity of the anchoring system keeping the wave device on station or the design of the device if it is seabed mounted. This paper will explore the lessons learnt from existing offshore wind farm developments as this represents the principal body of collected monitoring data. Using these data the paper will outline some of the challenges facing the offshore renewable industry in respect of the foundation designs and specifically the requirements for scour hazard assessment using the combined experience from those developments currently operational or under construction.

Author(s):  
George Caralis ◽  
Panagiotis Chaviaropoulos ◽  
Virginia Ruiz Albacete ◽  
Danae Diakoulaki ◽  
Vassiliki Kotroni ◽  
...  

2022 ◽  
Vol 10 (1) ◽  
pp. 92
Author(s):  
Lenaïg G. Hemery ◽  
Kailan F. Mackereth ◽  
Levy G. Tugade

Marine energy devices are installed in highly dynamic environments and have the potential to affect the benthic and pelagic habitats around them. Regulatory bodies often require baseline characterization and/or post-installation monitoring to determine whether changes in these habitats are being observed. However, a great diversity of technologies is available for surveying and sampling marine habitats, and selecting the most suitable instrument to identify and measure changes in habitats at marine energy sites can become a daunting task. We conducted a thorough review of journal articles, survey reports, and grey literature to extract information about the technologies used, the data collection and processing methods, and the performance and effectiveness of these instruments. We examined documents related to marine energy development, offshore wind farms, oil and gas offshore sites, and other marine industries around the world over the last 20 years. A total of 120 different technologies were identified across six main habitat categories: seafloor, sediment, infauna, epifauna, pelagic, and biofouling. The technologies were organized into 12 broad technology classes: acoustic, corer, dredge, grab, hook and line, net and trawl, plate, remote sensing, scrape samples, trap, visual, and others. Visual was the most common and the most diverse technology class, with applications across all six habitat categories. Technologies and sampling methods that are designed for working efficiently in energetic environments have greater success at marine energy sites. In addition, sampling designs and statistical analyses should be carefully thought through to identify differences in faunal assemblages and spatiotemporal changes in habitats.


2018 ◽  
Vol 596 ◽  
pp. 213-232 ◽  
Author(s):  
MJ Brandt ◽  
AC Dragon ◽  
A Diederichs ◽  
MA Bellmann ◽  
V Wahl ◽  
...  

2009 ◽  
Vol 1 (07) ◽  
pp. 809-813
Author(s):  
M. Martínez ◽  
A. Pulido ◽  
J. Romero ◽  
N. Angulo ◽  
F. Díaz ◽  
...  

Hydrobiologia ◽  
2021 ◽  
Author(s):  
Ninon Mavraki ◽  
Steven Degraer ◽  
Jan Vanaverbeke

AbstractOffshore wind farms (OWFs) act as artificial reefs, attracting high abundances of fish, which could potentially increase their local production. This study investigates the feeding ecology of fish species that abundantly occur at artificial habitats, such as OWFs, by examining the short- and the long-term dietary composition of five species: the benthopelagic Gadus morhua and Trisopterus luscus, the pelagic Scomber scombrus and Trachurus trachurus, and the benthic Myoxocephalus scorpioides. We conducted combined stomach content and stable isotope analyses to examine the short- and the time-integrated dietary composition, respectively. Our results indicated that benthopelagic and benthic species utilize artificial reefs, such as OWFs, as feeding grounds for a prolonged period, since both analyses indicated that they exploit fouling organisms occurring exclusively on artificial hard substrates. Trachurus trachurus only occasionally uses artificial reefs as oases of highly abundant resources. Scomber scombrus does not feed on fouling fauna and therefore its augmented presence in OWFs is probably related to reasons other than the enhanced food availability. The long-termed feeding preferences of benthic and benthopelagic species contribute to the hypothesis that the artificial reefs of OWFs could potentially increase the fish production in the area. However, this was not supported for the pelagic species.


2020 ◽  
Vol 32 (1) ◽  
Author(s):  
Anna Maria Bell ◽  
Marcus von der Au ◽  
Julia Regnery ◽  
Matthias Schmid ◽  
Björn Meermann ◽  
...  

Abstract Background Cathodic protection by sacrificial anodes composed of aluminum-zinc-indium alloys is often applied to protect offshore support structures of wind turbines from corrosion. Given the considerable growth of renewable energies and thus offshore wind farms in Germany over the last decade, increasing levels of aluminum, indium and zinc are released to the marine environment. Although these metals are ecotoxicologically well-studied, data regarding their impact on marine organisms, especially sediment-dwelling species, as well as possible ecotoxicological effects of galvanic anodes are scarce. To investigate possible ecotoxicological effects to the marine environment, the diatom Phaedactylum tricornutum, the bacterium Aliivibrio fischeri and the amphipod Corophium volutator were exposed to dissolved galvanic anodes and solutions of aluminum and zinc, respectively, in standardized laboratory tests using natural seawater. In addition to acute toxicological effects, the uptake of these elements by C. volutator was investigated. Results The investigated anode material caused no acute toxicity to the tested bacteria and only weak but significant effects on algal growth. In case of the amphipods, the single elements Al and Zn showed significant effects only at the highest tested concentrations. Moreover, an accumulation of Al and In was observed in the crustacea species. Conclusions Overall, the findings of this study indicated no direct environmental impact on the tested marine organisms by the use of galvanic anodes for cathodic protection. However, the accumulation of metals in, e.g., crustaceans might enhance their trophic transfer within the marine food web.


Sign in / Sign up

Export Citation Format

Share Document