Effect of Reeling Installation on Weld Residual Stress in Pipeline Girth Welds

Author(s):  
T. Sriskandarajah ◽  
Graeme Roberts ◽  
Daowu Zhou

A characteristic of pipeline installation by the reeling technique is the generation of high plastic strain around the majority of the pipeline’s circumference as it is spooled onto a drum, under displacement controlled conditions. It is well-known that the application of sufficiently high amounts of mechanical or thermal energy will “anneal” (relax) weld residual stresses and, therefore, under the gross plasticity experienced during reeling it should be expected that initial girth weld residual stresses will be entirely relaxed during the first reel cycle. The residual stress state needs to be taken into account in Engineering Critical Assessment (ECA) procedures of girth welds when predicting allowable defect dimensions. ECA codes such as DNV-OS-F101 and BS7910 assume the welding residual stress to be equal to the yield strength of the parent material and relaxation of welding residual stress under overload is allowed. However, the treatment specified in DNV is established from load-controlled scenarios and may result in un-realistic allowable defect dimensions in displacement-controlled situations such as reeling. Welding residual stress in reeling ECA is concerning to the subsea pipeline industry. By performing reeling simulations with 3D finite element analyses (FEA), this paper examines the welding residual stress before and after reeling and assesses the extent of residual stress relaxation. It was found that reeling axial strain causes significant relaxation of the weld residual stress at the pipe intrados and extrados. At the saddle points there is a slight disruption to the residual stress field. The full weld residual stress is relaxed from a value equal to the material yield stress, and is replaced by a plastic deformation induced stress of much lower magnitude, typically in the order of 100 MPa or less. The plastic deformation stress is of equal magnitude whether or not the pipe section contains initial weld residual stress and, therefore, it is concluded that weld residual stress can be ignored following the first reel cycle.

Author(s):  
Tao Zhang ◽  
F. W. Brust ◽  
Gery Wilkowski

Weld residual stresses in nuclear power plant can lead to cracking concerns caused by stress corrosion. These are large diameter thick wall pipe and nozzles. Many factors can lead to the development of the weld residual stresses and the distributions of the stress through the wall thickness can vary markedly. Hence, understanding the residual stress distribution is important to evaluate the reliability of pipe and nozzle joints with welds. This paper represents an examination of the weld residual stress distributions which occur in various different size nozzles. The detailed weld residual stress predictions for these nozzles are summarized. Many such weld residual stress solutions have been developed by the authors in the last five years. These distributions will be categorized and organized in this paper and general trends for the causes of the distributions will be established. The residual stress field can therefore feed into a crack growth analysis. The solutions are made using several different constitutive models such as kinematic hardening, isotropic hardening, and mixed hardening model. Necessary fabrication procedures such as repair, overlay and post weld heat treatment are also considered. Some general discussions and comments will conclude the paper.


2006 ◽  
Vol 129 (3) ◽  
pp. 345-354 ◽  
Author(s):  
P. Dong

In this paper, some of the important controlling parameters governing weld residual stress distributions are presented for girth welds in pipe and vessel components, based on a large number of residual stress solutions available to date. The focus is placed upon the understanding of some of the overall characteristics in through-wall residual stress distributions and their generalization for vessel and pipe girth welds. In doing so, a unified framework for prescribing residual stress distributions is outlined for fitness-for-service assessment of vessel and pipe girth welds. The effects of various joint geometry and welding procedure parameters on through thickness residual stress distributions are also demonstrated in the order of their relative importance.


Author(s):  
Liwu Wei ◽  
Weijing He ◽  
Simon Smith

The level of welding residual stress is an important consideration in the ECA of a structure or component such as a pipeline girth weld. Such a consideration is further complicated by their variation under load and the complexity involved in the proper assessment of fracture mechanics parameters in a welding residual stress field. In this work, 2D axi-symmetric FEA models for simulation of welding residual stresses in pipe girth welds were first developed. The modelling method was validated using experimental measurements from a 19-pass girth weld. The modeling method was used on a 3-pass pipe girth weld to predict the residual stresses and variation under various static and fatigue loadings. The predicted relaxation in welding residual stress is compared to the solutions recommended in the defect assessment procedure BS 7910. Fully circumferential internal cracks of different sizes were introduced into the FE model of the three-pass girth weld. Two methods were used to introduce a crack. In one method the crack was introduced instantaneously and the other method introduced the crack progressively. Physically, the instantaneously introduced crack represents a crack originated from manufacturing or fabrication processes, while the progressively growing crack simulates a fatigue crack induced during service. The J-integral values for the various cracks in the welding residual stress field were assessed and compared. This analysis was conducted for a welding residual stress field as a result of a welding simulation rather than for a residual stress field due to a prescribed temperature distribution as considered by the majority of previous investigations. The validation with the 19-pass welded pipe demonstrated that the welding residual stress in a pipe girth weld can be predicted reasonably well. The relaxation and redistribution of welding residual stresses in the three-pass weld were found to be significantly affected by the magnitude of applied loads and the strain hardening models. The number of cycles in fatigue loading was shown to have little effect on relaxation of residual stresses, but the range and maximum load together governed the relaxation effect. A significant reduction in residual stresses was induced after first cycle but subsequent cycles had no marked effect. The method of introducing a crack in a FE model, progressively or instantaneously, has a significant effect on J-integral, with a lower value of J obtained for a progressively growing crack. The path-dependence of the J-integral in a welding residual stress field is discussed.


Author(s):  
P. Dong

In this paper, some of the important controlling parameters in governing weld residual stress distributions are presented for girth welds in pipe and vessel components, based on a large number of residual stress solutions available to date. The focus is placed upon the understanding of some of the overall characteristics in through-wall residual stress distributions and their generalization for vessel and pipe girth welds. In doing so, a unified framework for prescribing residual stress distributions is then outlined for fitness-for-service assessment of vessel and pipe girth welds. The effects of various joint geometry and welding procedure parameters on through thickness residual stress distributions are also demonstrated in the order of their relative importance.


Author(s):  
Lionel Depradeux ◽  
Frédérique Rossillon

In order to obtain the residual stress field resulting from the welding process, numerical simulations of multi-pass welding have demonstrated their efficiency and have become an interesting alternative to practical measurements. However, in the context of engineering studies, it remains a difficult task to compute residual stresses for a very high number of passes with reasonable computation times. In this paper, a time-saving method is proposed to simulate the welding process, ensuring an accurate reproduction of the residual stress field with drastically reduced computation times. The method consists in including in the simulation only the last deposited pass, or a reduced number of appropriately selected passes. For a given material and a given heat input, the choice of remaining passes depends on the geometrical parameters. The method is applied to various geometries of austenitic pipes girth welds, which have been widely studied in the literature and standards. The results, confronted to multipass simulations including all the passes, and to literature results, are very satisfactory. Quasi-identical residual stress fields are computed in both cases with computation times divided by a factor comprised between 7 up to 12. Further computations are in progress on other configurations than girth-weld pipes, and more complex 3D geometry like J weld of bottom head nozzles.


Author(s):  
Anne Teughels ◽  
Rodolfo L. M. Suanno ◽  
Christian Malekian ◽  
Lucio D. B. Ferrari

The penetrations in the early Pressurized Water Reactors Vessels are characterized by Alloy 600 tubes, welded by Alloy 182/82. The Alloy 600 tubes have been shown to be susceptible to PWSCC (Primary Water Stress Corrosion Cracking) which may lead to crack forming. The cracking mechanism is driven mainly by the welding residual stress and, in a second place, by the operational stress in the weld region. It is therefore of big interest to quantify the weld residual stress field correctly. In this paper the weld residual stress field is calculated by finite elements, using a common approach well known in nuclear domain. It includes a transient thermal analysis simulating the heating during the multipass welding, followed by a transient thermo-mechanical analysis for the determination of the stresses involved with it. The welding consists of a sequence of weld beads, each of which is deposited in its entirety, at once, instead of gradually. Central as well as eccentric sidehill nozzles on the vessel head are analyzed in the paper. For the former a 2-dimensional axisymmetrical finite element model is used, whereas for the latter a 3-dimensional model is set up. Different positions on the vessel head are compared and the influence of the sidehill effect is illustrated. In the framework of a common project for Angra 1, Tractebel Engineering (Belgium) and Eletronuclear (Nuclear Utility, Brazil) had the opportunity to compare their analysis method, which they applied to the Belgian and the Brazilian nuclear reactors, respectively. The global approach in both cases is very similar but is applied to different configurations, specific for each NPP. In the article the results of both cases are compared.


Author(s):  
Adrian T. DeWald ◽  
Michael R. Hill

Welding residual stresses can significantly impact the performance of structural components. Tensile residual stresses are of particular concern due to their ability to cause significant degradation to the PWSCC resistance of structural materials. The contour method is a residual stress measurement technique capable of generating two dimensional maps of residual stress, which is particularly useful when applied to welds due to the complex residual stress distributions that generally result. The two-dimensional capability of the contour method enables detailed visualization of complex weld residual stress fields. This data can be used to identify locations and magnitude of tensile residual stress hot-spots. This paper provides a summary of the contour method and presents detailed results of contour method measurements made on the dissimilar metal weld region of pressurizer relief nozzles removed from the cancelled WNP-3 plant in the United States as part of the NRC/EPRI weld residual stress (WRS) program [1].


Sign in / Sign up

Export Citation Format

Share Document