Numerical Study of Wave Slamming on an Oscillating Flap

Author(s):  
Yanji Wei ◽  
Alan Henry ◽  
Olivier Kimmoun ◽  
Frederic Dias

Bottom hinged Oscillating Wave Surge Converters (OWSCs) are efficient devices for extracting power from ocean waves. There is limited knowledge about wave slamming on such devices. This paper deals with numerical studies of wave slamming on an oscillating flap to investigate the mechanism of slamming events. In our model, the Navier–Stokes equations are discretized using the Finite Volume method with the Volume of Fluid (VOF) approach for interface capturing. Waves are generated by a flap-type wave maker in the numerical wave tank, and the dynamic mesh method is applied to model the motion of the oscillating flap. Basic mesh and time step refinement studies are performed. The flow characteristics in a slamming event are analysed based on numerical results. Various simulations with different flap densities, water depths and wave amplitudes are performed for a better understanding of the slamming.

Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 841
Author(s):  
Yuzhen Jin ◽  
Huang Zhou ◽  
Linhang Zhu ◽  
Zeqing Li

A three-dimensional numerical study of a single droplet splashing vertically on a liquid film is presented. The numerical method is based on the finite volume method (FVM) of Navier–Stokes equations coupled with the volume of fluid (VOF) method, and the adaptive local mesh refinement technology is adopted. It enables the liquid–gas interface to be tracked more accurately, and to be less computationally expensive. The relationship between the diameter of the free rim, the height of the crown with different numbers of collision Weber, and the thickness of the liquid film is explored. The results indicate that the crown height increases as the Weber number increases, and the diameter of the crown rim is inversely proportional to the collision Weber number. It can also be concluded that the dimensionless height of the crown decreases with the increase in the thickness of the dimensionless liquid film, which has little effect on the diameter of the crown rim during its growth.


Author(s):  
Елена Сергеевна Тятюшкина ◽  
Андрей Сергеевич Козелков ◽  
Андрей Александрович Куркин ◽  
Вадим Викторович Курулин ◽  
Валентин Робертович Ефремов ◽  
...  

Обсуждается применение метода конечных объемов при решении уравнений Навье-Стокса для моделирования поверхностных волн. Сформулирована задача о распространении поверхностных волн, которая используется для оценки численной диффузии в решении уравнений Навье-Стокса. Предлагается методика оценки численной диффузии, выражаемой коэффициентом уменьшения амплитуды волны при прохождении ею одной своей длины (коэффициентом затухания). Дана оценка размеров сетки и шага по времени, выраженных в безразмерных величинах относительно параметров волны, необходимых для обеспечения приемлемого значения коэффициента затухания. Показана степень влияния каждого из сеточных параметров на увеличение коэффициента затухания. The application of numerical simulation methods based on the solution of the full three-dimensional Navier-Stokes equations for modelling of wave propagation on the water surface requires the construction of a grid model containing countable nodes throughout the entire volume of water medium. Insufficient grid resolution leads to insufficient detailing of the fields of velocity and pressure, as well as volume fraction of the liquid, which increases the numerical diffusion of the method and, ultimately, leads to an underestimation of oscillation amplitudes of the medium. A large time step also results in a “blurring” of the solution and significantly reduces its stability, especially when using the schemes which compress the front of the media interface. This paper presents the results of an assessment of acceptable grid sizes and time steps expressed in dimensionless parameters with respect to the wave parameters necessary to ensure accuracy of the solution sufficient for geophysical applications. The estimate is given for the method of calculating three-dimensional multiphase flows with a free surface based on solving the Navier-Stokes equations in a one-velocity approximation based on a completely implicit connection between velocity and pressure using the finite volume method. The finite volume method for the numerical solution of the Navier-Stokes equations is implemented for use on arbitrary unstructured grids. The methodology for estimation of numerical diffusion of the calculation method is proposed. This estimation is expressed as a percentage of the wave amplitude decrease at the distance equal to the one wavelength. In turn the methodology is based on the parameters entered to estimate the acceptable grid sizes and time step for the calculation method. Based on the described methodology, the results of the estimation of the grid resolution in the horizontal and vertical directions, the estimation of the time step, and the evaluation of the influence of the discretization scheme of the convective term are presented.


Author(s):  
Alex E. Ockfen ◽  
Konstantin I. Matveev

Experimental design and optimization of innovative ground-effect transportation means is an iterative process which requires a large amount of time and resources. To avoid the large experimental expense, numerical modeling can be used to investigate Wing-in-Ground (WIG) vehicle flight. In this paper, modeling technique is applied for a two dimensional NACA 4412 airfoil in viscous flow in and out of ground effect. The numerical method consists of a steady state, incompressible, finite volume method utilizing the Spalart-Allmaras turbulence model. Grid generation and solution of the Navier-Stokes equations are completed using FLUENT 6.3. The modeling procedures are first validated against published experimental data for unbounded flow around an airfoil. Wing section aerodynamic characteristics are then studied for varying ground heights and two separate boundary conditions: fixed ground and moving ground. Ground effect calculations are compared to several previous studies, and our results are found to correlate with published aerodynamic trends in ground effect, although all studies appear to predict different magnitudes of aerodynamic forces.


Author(s):  
J.-H. Jeon ◽  
S.-S. Byeon ◽  
Y.-J. Kim

The Francis turbine is a kind of reaction turbines, which means that the potential energy of water converted to rotational kinetic energy. In this study, the flow characteristics have been investigated numerically in a Francis turbine on the 15 MW hydropower generation with various blade profiles (NACA 65 and NACA 16 series) and discharge angles (14°, 15°, 17°, and 18°), using the commercial code, ANSYS CFX. The k-ω SST turbulence model is employed in the Reynolds averaged Navier-Stokes equations. The computing domain includes the spiral casing, guide vanes, and draft tube, which are discretized with a full three-dimensional mesh system of unstructured tetrahedral shapes. The results showed that the change of blade profiles and discharge angles significantly influenced the performance of the Francis turbine.


Author(s):  
Kai-Shing Yang ◽  
Ing-Young Chen ◽  
Chi-Chuan Wang

A numerical study is conducted to examine the flow characteristics of the inkjet print-head with special attentions on the refilling process. By solving the full set of three-dimensional transient Navier-Stokes equations and considering the process of bubble growth and collapse as a movable membrane, it is found that the double refilling channels can reduce the flow surge phenomenon considerably due to the imposed friction. However, for the additional cylinder obstacle placed at the filling channel, the flow surge phenomenon is still present. This is because of the jet-like flow along the cylinder leading to a collision and eruption of fluid angled towards the plane boundary with the presence of cylinder. The calculated results also indicated the flow surge can be moderately suppressed for fluid having larger dynamic viscosity.


1997 ◽  
Vol 119 (3) ◽  
pp. 512-518 ◽  
Author(s):  
Robert R. Hwang ◽  
Chia-Chi Yao

A numerical study has been conducted to investigate the behavior of the vortical wake created by a square cylinder placed in a laminar boundary-layer flow. The calculations are performed by solving the unsteady 2D Navier-Stokes equations with a finite-volume method. The Reynolds-number regime investigated is from 500 to 1500. Another parameter that is varied is the distance of the cylinder from the wall. The initial and subsequent development of the vortex shedding phenomenon are investigated. The presence of the wall is found to have strong effects on the properties of these vortices, as well as lift, drag, and Strouhal number.


Mathematics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1125
Author(s):  
Chemseddine Maatki

The finite volume method and potential-vorticity vector formalism in their three-dimensional form were used to numerically study the impact of an adiabatic and impermeable vertical barrier on the dispersion of a local aero-contaminant due to the double-diffusive Rayleigh–Benard convection inside a cubic container. Different governing parameters such as the Rayleigh number, buoyancy ratio and barrier height were analyzed for Le = 1.2 and Pr = 0.7, representing an air-contaminant mixture. The potential-vector-vorticity formalism in the three-dimensional form allowed the elimination of the pressure terms appearing in the Navier–Stokes equations. It was found that the heat and mass transfer as well as the effectiveness of the barrier in reducing contaminant dispersion are strongly influenced by the buoyancy ratio, the barrier size and the Rayleigh number. In addition, the barrier effectiveness is more than 70% for a height of half the building height.


2012 ◽  
Vol 5 (1) ◽  
pp. 105-117
Author(s):  
F. Kieno ◽  
A. Ouedraogo ◽  
O. M. Zongo ◽  
J. D. Bathiebo ◽  
B. Zeghmati

Two-dimensional numerical study of transient natural convection in an inclined cubic cavity filled with air using stream function-vorticity form for the Navier-Stokes equations has been carried out to explore the route toward chaos. The hot and cold vertical walls are maintained isothermal at temperature Tc and Th respectively and the other walls are adiabatic.  Two angles of inclination of the cavity 25° and 65° are considered. Transfers equations are solved using finite-difference discretization procedures. The study predicts various critical Rayleigh numbers for the two tilted angles characterizing the variation of the attractor behaviour and shows that the larger the Rayleigh number is, the more sensitive the attractor becomes to time step and meshes size. The routes toward the chaos followed by the attractor are: limit point / limit cycle / T2 torus / cycle fitted on a T2 torus / chaos / T2 torus / cycle fitted on a T2 torus / chaos when the Rayleigh number increases. The analysis confirms also the bifurcation of the attractor from a limit point to a limit cycle via an overcritical Hopf bifurcation for a Rayleigh number between 1.95x106 and 1.96x106.© 2013 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.doi: http://dx.doi.org/10.3329/jsr.v5i1.10709        J. Sci. Res. 5 (1), 105-117 (2013) 


2018 ◽  
Vol 40 ◽  
pp. 05056 ◽  
Author(s):  
Xun Han ◽  
Pengzhi Lin ◽  
Gary Parker

A 3D numerical model named NEWTANK is employed to investigate the flow motion and sediment transport in grouped spur dikes system. This model is based on the Navier-Stokes equations, adopting the Volume of Fluid (VOF) method to track the free surface motion, while the solid is described by using the Porous Media Method (PMM). The Large Eddy Simulation (LES) is applied to capture turbulence. In sediment calculation parts, the suspended load and bedload are treated separately but combined together to update bed variation eventually. The finite difference form and Two-step Projection Method are employed in the process of discretizing the governing equation. Several carefully selected flume experiments are introduced to verify this model's reliability before its application on the simulation of grouped spur dike case, and detailed flow characteristics and sediment properties are analyzed afterwards.


2015 ◽  
Vol 2015 ◽  
pp. 1-25 ◽  
Author(s):  
Mohsen Ebrahimi ◽  
Madjid Abbaspour

The hydrodynamics and energetics of bioinspired oscillating mechanisms have received significant attentions by engineers and biologists to develop the underwater and air vehicles. Undulating and pure heaving (or plunging) motions are two significant mechanisms which are utilized in nature to provide propulsive, maneuvering, and stabilization forces. This study aims to elucidate and compare the propulsive vortical signature and performance of these two important natural mechanisms through a systematic numerical study. Navier-Stokes equations are solved, by a pressure-based finite volume method solver, in an arbitrary Lagrangian-Eulerian (ALE) framework domain containing a2D NACA0012foil moving with prescribed kinematics. Some of the important findings are (1) the thrust production of the heaving foil begins at lower St and has a greater growing slope with respect to the St; (2) the undulating mechanism has some limitations to produce high thrust forces; (3) the undulating foil shows a lower power consumption and higher efficiency; (4) changing the Reynolds number (Re) in a constant St affects the performance of the oscillations; and (5) there is a distinguishable appearance of leading edge vortices in the wake of the heaving foil without observable ones in the wake of the undulating foil, especially at higher St.


Sign in / Sign up

Export Citation Format

Share Document