Design of Novel Solution of Flexible Pipe for Offshore Oil Offloading Transfer

Author(s):  
A. T. Do ◽  
S. Legeay ◽  
D. Charliac ◽  
J. M. Pere ◽  
J. P. Roques ◽  
...  

Spread moored FPSO (Floating Production and Storage Offloading) vessels are generally used for the large West African oil fields. The oil is transferred from the FPSO to shuttle tankers via an Oil Loading Terminal (OLT). 2 to 3 large diameter flexible lines are connecting the FPSO to the OLT. The final connection between the OLT and the shuttle tanker is made by floating hoses. The single length of each flexible pipe can be typically 2,300 meters or higher, and the internal diameter is generally very large in the order of 15_23″ to minimize the pressure drop and the offloading time. Conventional flexible pipe is the most suitable solution for this application. However, its long length and large diameter require a large number of buoyancy modules which are necessary to support the substantial weight generated by the steel armor wires. An alternative to steel is Carbon Fiber Composite (CFC). This material is not only twice as strong and five times lighter than a high strength steel but it is also characterized by its exceptional performance in fatigue. As the weight of the composite armor flexible pipe is significantly reduced, the use of buoyancy is no longer necessary. The pipe can also be manufactured in a single length without intermediate connection. A qualification program based on a 19″ internal diameter prototype has been launched. This is the first time that a large internal prototype with Carbon Fiber Composite Armor (CFA) and end-fittings have been designed and manufactured. The main goals are to confirm the suitability of the CFA flexible pipe for oil offloading application in accordance with the design tools. The mechanical behavior responses of the CFA are monitored by strain gages when the flexible pipe is in straight and curved positions under internal pressure and bending cycles. The paper will present the main mechanical properties and the overall performance of the flexible pipe designed and tested. The economic viability will be demonstrated by showing how the CFC material cost is positively offset by the removal of the buoyancy modules and a faster offshore installation.

Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3164 ◽  
Author(s):  
Huili Yu ◽  
Hui Zhao ◽  
Fangyuan Shi

Unidirectional carbon fiber composite material is one of the most common types of composites employed in vehicles, and its bending performance plays an important role in crash safety, especially in side pole impact. This study aimed to redesign one of the most important components of the side structure of a vehicle, the rocker panel, with unidirectional carbon fiber composite material. Our results show that it is not easy to acquire the same bending performance as that of a steel rocker panel by merely replacing it with carbon fiber material and increasing the wall thickness. Therefore, reinforcements were employed to improve the bending performance of the carbon fiber rocker panel, and a polypropylene reinforcement method achieved a weight reduction of 40.7% compared with high-strength steel.


2018 ◽  
Vol 1148 ◽  
pp. 43-47 ◽  
Author(s):  
Vemu Vara Prasad ◽  
Javisseti Nageswara Rao

Among various composites available for use, carbon fiber reinforced composite is unique in its Nature. Carbon fiber is an extremely strong thin fiber made by pyrolyzing synthetic fibers, such as rayon, until charred. High Strength Composites are made from this fiber by using appropriate matrix material mostly Epoxy resins are used. High Strength, stiffness, light weight and high thermal conductivity are the main advantages over the other composites. Making products with one single composite sheet is not possible always. Some of the intricate or complex shape making is required for joining of two composite sheet. The composites joining can be done in three ways mainly Adhesive, Riveting and Hybrid. Based on the Review among all these joints adhesive joining gives better economic solution in joining. Experimental results point to significant influence of fibre on mechanical properties of sample. The tensile test of the acoustic signal emission (AE) to identify the current state of material integrity in real time. Acoustic system signal correlated to damage events. The carbon fiber composite characteristic failure mechanisms are initiated on the microscale and result in a spontaneous release of elastic energy in terms of mechanical stress waves, the so-called acoustic emissions.


2013 ◽  
Vol 328 ◽  
pp. 995-999
Author(s):  
Zhi Hua Sha ◽  
Yi Wang ◽  
Sheng Fang Zhang

Carbon fiber composite is widely used in aerospace and aircraft industries because of their remarkable advantages such as lightweight and high strength. As an effective holemaking technology, helical milling is widely used in machining carbon fiber composite material recently. In this paper, the mathematics modeling of tool motion in helical milling is studied and simulated; the effect of eccentricity on helical milling is analyzed and tested by experiment. From the analysis and experiment, a conclusion is drawn that: using a smaller diameter tool and larger eccentricity cause a decrease in thrust force and an improvement in delamination defects.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1977
Author(s):  
Witold Rządkowski ◽  
Jan Tracz ◽  
Adam Cisowski ◽  
Kamil Gardyjas ◽  
Hubert Groen ◽  
...  

The aim of this paper is to compare two methods of epoxy adhesive bond gap control: one with a geometrical (mechanical) solution and the other with glass beads, which have the diameter of the desired bond gap and are mixed with an epoxy adhesive. The adhered materials were carbon fiber composite tubes and aluminum alloy inserts, which were used as wishbones in a suspension system of a motorsport vehicle. It was assumed that the gap thickness would be equal to 0.2 mm and the length of a bond would be 30 mm. The internal diameter of the tubes was 14 mm and 18 mm, whereas the inserts’ external diameter was 13.6 mm and 17.6 mm. Their surface has been subjected to mechanical treatment with sand paper starting from 240 grit up to 400. The adhesives used were EA 3425 and EA 9466 cured at 80 °C for 2 h. The results showed that the glass beads method provides more consistent and better results as compared to the geometrical (mechanical) method. Further study in the area of fatigue and interfacial failure modes could be useful.


2019 ◽  
Vol 9 (7) ◽  
pp. 922-928
Author(s):  
Haiguang Zhang ◽  
BaoQuan Qi ◽  
Qingxi Hu ◽  
Biao Yan ◽  
Dali Liu ◽  
...  

Carbon fibers are excellent materials for engineering biomedical materials and devices owing to their functional properties of low weight, high strength, high chemical and thermal stability, and blood and cell compatibility. Recent studies have demonstrated that the carbon fibers could be used as a scaffolding system for bone repair and regenerative application. However, carbon fiber-based composite products lack the long-term retention of their biological property upon implantation, which greatly affects their wider biomedical applications. In this study, design and fabrication of carbon fibers composite scaffolds using a fast 3D printing technology has been successfully realized, which provides a new direction for the biomedical application of carbon fiber composite materials.


2008 ◽  
Author(s):  
Andrew Littlefield ◽  
Edward Hyland ◽  
Jack Keating

Sign in / Sign up

Export Citation Format

Share Document