Comparison of Cyclic P-Y Methods for Offshore Wind Turbine Monopiles Subjected to Extreme Storm Loading

Author(s):  
Wystan Carswell ◽  
Casey Fontana ◽  
Sanjay R. Arwade ◽  
Don J. DeGroot ◽  
Andrew T. Myers

Approximately 75% of installed offshore wind turbines (OWTs) are supported by monopiles, a foundation whose design is dominated by lateral loading. Monopiles are typically designed using the p-y method which models soil-pile resistance using decoupled, nonlinear elastic Winkler springs. Because cyclic soil behavior is difficult to predict, the cyclic p-y method accounts for cyclic soil-pile interaction using a quasistatic analysis with cyclic p-y curves representing lower-bound soil resistance. This paper compares the Matlock (1970) and Dunnavant & O’Neill (1989) p-y curve methods, and the p-y degradation models from Rajashree & Sundaravadivelu (1996) and Dunnavant & O’Neill (1989) for a 6 m diameter monopile in stiff clay subjected to storm loading. Because the Matlock (1970) cyclic p-y curves are independent of the number of load cycles, the static p-y curves were used in conjunction with the Rajashree & Sundaravadivelu (1996) p-y degradation method in order to take number of cycles into account. All of the p-y methods were developed for small diameter piles, therefore it should be noted that the extrapolation of these methods for large diameter OWT monopiles may not be physically accurate; however, the Matlock (1970) curves are still the curves predominantly recommended in OWT design guidelines. The National Renewable Energy Laboratory wind turbine analysis program FAST was used to produce mudline design loads representative of extreme storm loading. These design loads were used as the load input to cyclic p-y analysis. Deformed pile shapes as a result of the design load are compared for each of the cyclic p-y methods as well as pile head displacement and rotation and degradation of soil-pile resistance with increasing number of cycles.

2020 ◽  
Vol 5 (4) ◽  
pp. 1521-1535
Author(s):  
Gianluca Zorzi ◽  
Amol Mankar ◽  
Joey Velarde ◽  
John D. Sørensen ◽  
Patrick Arnold ◽  
...  

Abstract. The design of foundations for offshore wind turbines (OWTs) requires the assessment of long-term performance of the soil–structure interaction (SSI), which is subjected to many cyclic loadings. In terms of serviceability limit state (SLS), it has to be ensured that the load on the foundation does not exceed the operational tolerance prescribed by the wind turbine manufacturer throughout its lifetime. This work aims at developing a probabilistic approach along with a reliability framework with emphasis on verifying the SLS criterion in terms of maximum allowable rotation during an extreme cyclic loading event. This reliability framework allows the quantification of uncertainties in soil properties and the constitutive soil model for cyclic loadings and extreme environmental conditions and verifies that the foundation design meets a specific target reliability level. A 3D finite-element (FE) model is used to predict the long-term response of the SSI, accounting for the accumulation of permanent cyclic strain experienced by the soil. The proposed framework was employed for the design of a large-diameter monopile supporting a 10 MW offshore wind turbine.


2020 ◽  
Vol 205 ◽  
pp. 12008
Author(s):  
William F Van Impe ◽  
Shin-Tower Wang

The analyses of monopile foundations have been heavily based on the p-y response curves (to represent lateral soil resistances) published by API RP 2GEO (2011) and DNV (2013), which are proven reliable and applicable for piles with smaller diameters that were normally used for jacket structures in the offshore industry. However, concerns have been raised about the validity of semi-empirical p-y criteria for large-diameter piles. Wind turbine monopiles have a significantly larger diameter and smaller length to diameter ratio than typical piles used for offshore structures. The ratio of the length to the diameter for a monopile typically is also significantly smaller than those used in the API load tests. Therefore, the response of a monopile may be more like a rigid rotation, with components of resistance mobilized at the tip and axially along the sides as it rotates. This behaviour is in contrast to long slender piles that respond to lateral loading in bending rather than rotation. The objective of this paper is to analyze the factors that may contribute to the apparent conservatism in the current design practice for large-diameter monopile foundations and to provide improved solutions on how to analyze and design the large-diameter monopiles for offshore wind turbine using the p-y method.


Author(s):  
P. Agarwal ◽  
L. Manuel

When interest is in estimating long-term design loads for an offshore wind turbine using simulation, statistical extrapolation is the method of choice. While the method itself is rather well-established, simulation effort can be intractable if uncertainty in predicted extreme loads and efficiency in the selected extrapolation procedure are not specifically addressed. Our aim in this study is to address these questions in predicting blade and tower extreme loads based on stochastic response simulations of a 5 MW offshore turbine. We illustrate the use of the peak-over-threshold method to predict long-term extreme loads. To derive these long-term loads, we employ an efficient inverse reliability approach which is shown to predict reasonably accurate long-term loads when compared to the more expensive direct integration of conditional load distributions for different environmental (wind and wave) conditions. Fundamental to the inverse reliability approach is the issue of whether turbine response variability conditional on environmental conditions is modeled in detail or whether only gross conditional statistics of this conditional response are included. We derive design loads for both these cases, and demonstrate that careful inclusion of response variability not only greatly influences long-term design load predictions but it also identifies different design environmental conditions that bring about these long-term loads compared to when response variability is only approximately modeled. As we shall see, for this turbine, a major source of response variability for both the blade and tower arises from blade pitch control actions due to which a large number of simulations is required to obtain stable distribution tails for the turbine loads studied.


Author(s):  
Lars P. Nielsen

When considering offshore monopile foundations designed for wind turbine support structures, a grouted connection between the monopile and an overlapping transition piece has become the de facto standard. These connections rely on axial loads being carried primarily by the bond between the steel and grout as shear. Given the critical nature of the grouted connection in a system with zero redundancy, the current design verification requirement is that a finite element analysis is performed to ascertain the viability of the connection with respect to combined axial and bending capacity whilst pure axial capacity is handled as a decoupled phenomenon using simple analytical formulas. The present paper addresses the practical modeling aspects of such a finite element model, covering subjects such as constitutive formulations for the grout, mesh density, and steel/grout interaction. The aim of the paper is to discuss different modeling approaches and, to the extent possible, provide basic guidelines for the minimum requirements valid for this type of analysis. This discussion is based on the accumulated experience gained though the independent verification of more than 10 currently operational offshore wind farms that have been certified by DNV, as well as the significant joint research and development with industry captured in the DNV Offshore Standard for Design of Offshore Wind Turbine Structures DNV-OS-J101. Moreover, general observations relating to the basic subjects such as overall geometric extent of the model, inclusion of secondary structures, detail simplification, boundary conditions, load application etc. are presented based on the authors more than 3 year involvement on the subject at DNV.


2021 ◽  
Vol 11 (4) ◽  
pp. 1718
Author(s):  
Yeong-Hoon Jeong ◽  
Seong-Won Lee ◽  
Jae-Hyun Kim

In this study, the cyclic responses of an offshore wind turbine with a tripod foundation installed on an actual site were evaluated in a centrifuge. To understand the behavior of the turbine at the site, the site soil conditions, environmental loads, and real offshore wind turbine structure installed at the actual site were modeled by considering the centrifuge scaling law. From a series of cyclic loading tests, the cyclic responses of the tripod foundation were evaluated in terms of temporary/permanent displacements and cyclic stiffness. Moreover, the long-term behavior of the tripod foundation was predicted from the experimental results. The test results showed that the initial stiffness of the soil–foundation system decreased as the loading amplitude increased and that the stiffness increased with the number of cycles due to soil densification. The findings revealed that the cyclic behaviors of the tripod were more affected by the load amplitude than the number of cycles. In addition, the permanent rotation increased logarithmically with the number of cycles. A simple method to predict the displacement and change in the foundation stiffness of the actual wind turbine is proposed based on the results of the model tests. The results of this study also provide key insights into the long-term cyclic behavior of tripod foundations for offshore wind turbines.


Author(s):  
E. Marino ◽  
H. Nguyen ◽  
C. Lugni ◽  
L. Manuel ◽  
C. Borri

The accuracy of predicted loads on offshore wind turbines depends on the mathematical models employed to describe the combined action of the wind and waves. Using a global simulation framework that employs a domain-decomposition strategy for computational efficiency, this study investigates the effects of nonlinear waves on computed loads on the support structure (monopile) and the rotor–nacelle assembly of a bottom-supported offshore wind turbine. The fully nonlinear (FNL) numerical wave solver is invoked only on subdomains where nonlinearities are detected; thus, only locally in space and time, a linear solution (and associated Morison hydrodynamics) is replaced by the FNL one. An efficient carefully tuned linear–nonlinear transition scheme makes it possible to run long simulations such that effects from weakly nonlinear up to FNL events, such as imminent breaking waves, can be accounted for. The unsteady nonlinear free-surface problem governing the propagation of gravity waves is formulated using potential theory and a higher-order boundary element method (HOBEM) is used to discretize Laplace’s equation. The FNL solver is employed and associated hydrodynamic loads are simulated in conjunction with aerodynamic loads on the rotor of a 5-MW wind turbine using the NREL open-source software, fast. We assess load statistics associated with a single severe sea state. Such load statistics are needed in evaluating relevant load cases specified in offshore wind turbine design guidelines; in this context, the influence of nonlinear wave modeling and its selection over alternative linear or linearized wave modeling is compared. Ultimately, a study such as this one will seek to evaluate long-term loads using the FNL solver in computations directed toward reliability-based design of offshore wind turbines where a range of sea states will need to be evaluated.


Sign in / Sign up

Export Citation Format

Share Document