A Multi-Body Dynamic Model Based on Bond Graph for Maritime Hydraulic Crane Operations

Author(s):  
Yingguang Chu ◽  
Vilmar Æsøy

This paper presents a bond graph model of a maritime crane lifting system comprised of a 3DOFs crane with three revolute joints, a winch, a segment of wire, and a pendulum load. The multi-body model contains the dynamic properties of the system and 3D animation of the operational behaviors. Lagrange’s method was used to derive the dynamic equations of the multi-body crane. Lagrange’s equations provide a clean elegant form for implementation using a special type of bond graph called IC-field. The model based on the bond graph contains interfaces to other domain models, e.g. input devices, control systems, hydraulic actuators, and sensors. Maritime crane operations are challenging due to the impact of heavy lifting, system stiffness and load sway resulted from the unstable working platform. The industry increasingly demands an overall virtual environment for modeling and simulation of maritime operations. The accomplishment will highly increase the efficiency and effectiveness of product and system design, new component and control algorithm testing, and operator training. The multi-body dynamic model is the core building block for modeling and simulation of maritime crane operations.

2021 ◽  
Vol 9 (11) ◽  
pp. 1221
Author(s):  
Weixin Zhang ◽  
Ye Li ◽  
Yulei Liao ◽  
Qi Jia ◽  
Kaiwen Pan

The wave-driven catamaran is a small surface vehicle driven by ocean waves. It consists of a hull and hydrofoils, and has a multi-body dynamic structure. The process of moving from static state to autonomous navigation driven by ocean waves is called “self-propulsion”, and reflects the ability of the wave-driven catamaran to absorb oceanic wave energy. Considering the importance of the design of the wave-driven catamaran, its self-propulsion performance should be comprehensively analysed. However, the wave-driven catamaran’s multi-body dynamic structure, unpredictable dynamic and kinematic responses driven by waves make it difficult to analyse its self-propulsion performance. In this paper, firstly, a multi-body dynamic model is established for wave-driven catamaran. Secondly, a two-phase numerical flow field containing water and air is established. Thirdly, a numerical simulation method for the self-propulsion process of the wave-driven catamaran is proposed by combining the multi-body dynamic model with a numerical flow field. Through numerical simulation, the hydrodynamic response, including the thrust of the hydrofoils, the resistance of the hull and the sailing velocity of the wave-driven catamaran are identified and comprehensively analysed. Lastly, the accuracy of the numerical simulation results is verified through a self-propulsion test in a towing tank. In contrast with previous research, this method combines multi-body dynamics with computational fluid dynamics (CFD) to avoid errors caused by artificially setting the motion mode of the catamaran, and calculates the real velocity of the catamaran.


2019 ◽  
Vol 287 ◽  
pp. 03005
Author(s):  
Jan Furch ◽  
Cao Vu Tran

The combat vehicle gearbox, during the operation, generates vibration signals being related to the technical condition of gearbox. The analysis of the vibration signal could be used to determine accurately the behaviour of gearbox. Along with the development of the computer technology, the multi-body dynamic solution has been used widely to simulate, analyse, and determine the technical condition of gearbox. The purpose of this paper is to introduce the dynamic model of combat vehicle gearbox, and the simulation process based on the multi-body dynamic software, namely MSC.ADAMS. This proposed model allows the detection of failure conditions of individual gears and bearings in the gearbox. In this way, the fault conditions of the individual transmission components are identified. In the future, we would like to include a material wear module in the model, and we would like to model the life of the gearbox. We assume that we would also carry out accelerated tests of the gearbox to verify validity.


Author(s):  
Qiuwan Duan ◽  
Yang Yang

When a platform is operating in a mooring, various vessels that frequently pass by result in severe accidental collisions of the platform. Thus, the kinematic response of the mooring platform should be investigated. A new analytical method, including a load analysis and kinematics analysis, is proposed in this paper. In the load analysis, the impact force is calculated using finite element method (FEM). In the kinematic analysis, closed-form analytical expressions based on multi-body dynamics are derived with the impact force as an input. Furthermore, the expressions are improved considering the fluid effect. A series of collision cases are implemented to validate the proposed method by FEM. The kinematic results solved by the proposed method agree well with FEM, which illustrates that the method is feasible and accurate. However, the proposed method taking around 30s, which is much shorter than 7200s by FEM, is proved to be more efficient.


2013 ◽  
Vol 328 ◽  
pp. 589-593
Author(s):  
Li Hua Wang ◽  
An Ning Huang ◽  
Guang Wei Liu

There are higher requirements on running stability of the rail vehicle with the incensement of the running speed. The running stability is one of the important indicators of evaluating the dynamic performance of the rail vehicle. In this paper, the whole multi-body dynamic model of the rail vehicle was proposed based on the theory of multi-body dynamics in the software of Simpack. And the lateral and vertical vibrate accelerations of the rail vehicle were simulated when it was inspired by the track irregularities. Then the running stabilities of the rail vehicle were estimated accurately. This will propose basis on the improving design and optimization design of the whole rail vehicle.


Sign in / Sign up

Export Citation Format

Share Document