Corrosion Effects on the Strength of Steel Pipes Using FEA

Author(s):  
Bipul Chandra Mondal ◽  
Ashutosh Sutra Dhar

This paper presents a finite element investigation on the strength and deformation characteristics of corroded steel pipes with corrosion on the exterior and interior surfaces of the pipes considering different corrosion parameters such as circumferential extent (width) of corrosion, ratio of corrosion width to pipe diameter and the locations of corrosion. The finite element analysis was performed using a commercially available general purpose finite element program, ABAQUS/Explicit. The study reveals that localized bending develops on the pipe wall within the corroded zone that extent up to a certain distance (1 to 1.5 times the corrosion dimension) in the non-corroded area. The localized bending causes stress concentration in the vicinity of the corroded area that is not well captured in the current design standards (i.e. modified ASME B31G). As a result, the modified ASME B31G method overestimated the pipe capacity comparing to the capacity calculated based on the finite element analysis. A pipe designed using the modified ASME B31G method is expected to provide a factor of safety less than the design factor of safety. The effects of circumferential extent of corrosion appears to be less compared to the effects of longitudinal extent of corrosion. The exterior corrosion was found to be more detrimental in comparison with the interior corrosion.

2013 ◽  
Vol 391 ◽  
pp. 168-171
Author(s):  
Shou Jun Wang ◽  
Li Bo Yang

When it comes to the design of a wave-frame,empirical design is always adopted domestic,which is relatively conservative on stiffness and intensity and prefer a bigger factor of safety,thus these bring many uncertainties to the wave-frame.In order to reduce the negative effect to the wave system,the analysis of the wave-frame based on ANSYS is executed to have a knowledge of the weakness and the deformation of various parts.On the permise of ensuring the stiffness and intensity,with the method of grouping and using different profile steel,the purpose is to reduce the mass snd the negative effect brought by mass,and achieve the goal of optimization.


1992 ◽  
Vol 29 (6) ◽  
pp. 971-988 ◽  
Author(s):  
Z. Chen ◽  
N. R. Morgenstern ◽  
D. H. Chan

The mechanism of progressive failure is well understood as one which involves nonuniform straining of a strain-weakening material. Traditional limit equilibrium analysis cannot be used alone to obtain a rational solution for progressive failure problems because the deformation of the structure must be taken into account in the analysis. The failure of the Carsington Dam during construction in 1984 has been attributed to progressive failure of the underlying yellow clay and the dam core materials. The dam was monitored extensively prior to failure, and an elaborate geotechnical investigation was undertaken after failure. The limit equilibrium analysis indicated that the factors of safety were over 1.4 using peak strength of intact clay material or 1.2 based on reduced strength accounting for preshearing of the yellow clay layer. Factors of safety were found to be less than unity if residual strengths were used. The actual factor of safety at failure was, of course, equal to one. By using the finite element analysis with strain-weakening models, the extent and degree of weakening along the potential slip surface were calculated. The calculated shear strength was then used in the limit equilibrium analysis, and the factor of safety was found to be 1.05, which is very close to the actual value of 1.0. More importantly, the mechanism of failure and the initiation and propagation of the shear zones were captured in the finite element analysis. It was also found that accounting explicitly for pore-water pressure effects using the effective stress approach in the finite element and limit equilibrium analyses provides more realistic simulations of the failure process of the structure than analyses based on total stresses. Key words : progressive failure, strain softening, finite element analysis, dams.


2011 ◽  
Vol 295-297 ◽  
pp. 1564-1567
Author(s):  
Yong Hong ◽  
Seokjun Yu ◽  
Jaejung Lee ◽  
Hyeonsu Ha ◽  
Dong Pyo Hong

The multi-stage boom consisting of several booms is used in order to develop the aerial platform truck that can be used in a working radius that is higher and safe. Because the length increases compared with the width or the height of the structure, the intensity and rigidity are lowered along with the safety. Accordingly, a countermeasure is needed. Therefore, in this research, when designing of the high ground work difference Boom System, the safety the stress of the considered boom the analyze method and experimental method tries to be evaluated through the comparison. The finite-element analysis(FEA) compared the Strain value which is obtained through the resolution value and actual experiment by using the Ansys,that is the general purpose program, and proved this safety.


2011 ◽  
Vol 250-253 ◽  
pp. 1050-1053
Author(s):  
Jun Ho Shin ◽  
Nam Yong Jee ◽  
Leslie J. Struble ◽  
R. James Kirkpatrick

The objective of this study is to develop a numerical model based on microstructural images of concrete and fundamental material properties of each constituent of concrete subjected to alkali-silica reaction (ASR). A microstructure-based finite element approach is employed directly to analyze the mechanical response of concrete to ASR. The modeling work involves acquiring and processing of microstructural images of specimens suffering from ASR using scanning electron microscopy, and implementing finite element program to analyze the microstructural images. The formulation of this model is based on pressure caused by the ASR product and on properties such as Young’s modulus and Poisson’s ratio. The finite element analysis program used to simulate structural behavior of structures attacked by ASR is object-oriented finite element developed at National Institute of Standards and Technology. The numerical results from this model are compared with experimental data, which have been measured using ASTM standard test C1260. The results show that the development and widening of cracks by formation and swelling of ASR gel cause the majority of expansion of mortar specimens rather than elastic elongation due to gel swelling.


The paper emphasizes on designing a high performance All-Terrain Vehicle (ATV). We started the designing of 3D model of vehicle using CATIA V5 software. With considering, the critical parameters such as overall weight, safety, high strength, and ergonomics, the roll cage of all-terrain vehicle is designed and then its static analysis is carried out. The Roll cage plays a major role which provides safety to the driver and also it is a main building block of ATV. In this research paper, the roll cage is designed by considering all the constraints provided by SAE (Society of Automotive Engineers). The finite element analysis was done using ANSYS 15.0. Various impacts that the roll cage can undergo are studied. From the optimum design with considering the factor of safety in the account, the roll cage was designed with superior weight to strength ratio. The results obtained after the analysis stated the designed to be safe and sound.


1985 ◽  
Vol 13 (3) ◽  
pp. 127-146 ◽  
Author(s):  
R. Prabhakaran

Abstract The finite element method, which is a numerical discretization technique for obtaining approximate solutions to complex physical problems, is accepted in many industries as the primary tool for structural analysis. Computer graphics is an essential ingredient of the finite element analysis process. The use of interactive graphics techniques for analysis of tires is discussed in this presentation. The features and capabilities of the program used for pre- and post-processing for finite element analysis at GenCorp are included.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


2018 ◽  
Vol 55 (4) ◽  
pp. 666-675
Author(s):  
Mihaela Tanase ◽  
Dan Florin Nitoi ◽  
Marina Melescanu Imre ◽  
Dorin Ionescu ◽  
Laura Raducu ◽  
...  

The purpose of this study was to determinate , using the Finite Element Analysis Method, the mechanical stress in a solid body , temporary molar restored with the self-curing GC material. The originality of our study consisted in using an accurate structural model and applying a concentrated force and a uniformly distributed pressure. Molar structure was meshed in a Solid Type 45 and the output data were obtained using the ANSYS software. The practical predictions can be made about the behavior of different restorations materials.


2013 ◽  
Vol 83 (7) ◽  
pp. 1087-1096 ◽  
Author(s):  
A. Ranjbaran ◽  
H. Rousta ◽  
M. O. Ranjbaran ◽  
M. A. Ranjbaran ◽  
M. Hashemi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document