The Effect of Gap Space on Flow Induced Motions of Two Square Cylinders in Tandem

Author(s):  
Haibo Wang ◽  
Qunfeng Zou ◽  
Li Zhang ◽  
Chunmei Wu ◽  
Lin Ding

When the Reynolds number is in the range of 30,000 and 100,000, the vibration characteristics of two square cylinders with elastic support and different tandem spacing are investigated by 2-D URANS simulations using OpenFOAM. In this work, the center to center distance (d) of two square cylinders is an important parameter and it increases from 2 to 6 diameters (D). Amplitude responses and frequency responses of first and second square cylinders are discussed and compared. The amplitude and frequency responses of first square cylinder are verified by the experiment results of Nemes et al. and they agree well in changing trends. The simulation results indicate that the amplitudes of the two square cylinders with different tandem spacing show an increasing trend with reduced velocity increasing. The maximum amplitudes reach 1.06D and 1.10D for the first and the second cylinders, respectively. And the oscillation of the second square cylinder is enhanced when d = 4D. The center to center distance has no significant effect on the frequency ratios of two square cylinders.

2019 ◽  
Vol 33 (06) ◽  
pp. 1950066 ◽  
Author(s):  
Qiao-Gao Huang ◽  
Guang Pan

In this paper, is the hydrodynamics of three in-line square cylinders in a uniform flow, where the gap between two neighboring square cylinders is equivalent is under investigation. The fluid dynamics around those multiple bluff bodies, including time-mean drag coefficients, time-mean lift coefficients and Strouhal numbers, are considered at the Reynolds number [Formula: see text]. Through numerically solving the nonlinear hydrodynamic problem, we show that the drag force acting on the first square cylinder is always larger than that acting on the remaining two square cylinders. From the perspective of wake structures, with keeping the increase of the gap between two neighboring square cylinders, the wake structures become much more complicated, including attachment of shear layer, interaction between shear layer and vortex, interaction between vortex and vortex, etc. Moreover, the Strouhal number of three square cylinders are approximately equaled when the dimensionless gap between two neighboring square cylinders is less than 2.


Author(s):  
Y. T. Krishne Gowda ◽  
H. V. Ravindra ◽  
C. K. Vikram

Flow past the two square cylinders with and without corner modification in a tandem arrangement has been simulated using a CFD code FLUENT. A Reynolds number of 100 and pitch to perimeter ratios (PPR) of 2,4 and 6 are considered for the investigation. The flow is assumed to be two dimensional unsteady and incompressible. The obtained results are presented in the form of streamlines, pressure distribution, monitored velocity, lift coefficient and Strouhal number. Results indicate, in case of chamfered and rounded corners, there is decrease in the wake width and thereby the lift values. For the square cylinders of same perimeters with and without corner modification, the size of the eddy and the monitored velocity in between the square cylinders increases with increase in PPR. Frequency of vortex shedding is same in between the cylinders and in the downstream of the cylinder. Frequency of vortex shedding decreases with the introduction of second cylinder either in the upstream or downstream of the first cylinder. The lift coefficient of square cylinder with corner modification decreases but Strouhal number increases when compared with a square cylinder without corner modification.


2011 ◽  
Vol 330 (15) ◽  
pp. 3620-3635 ◽  
Author(s):  
Mohamed Sukri Mat Ali ◽  
Con J. Doolan ◽  
Vincent Wheatley

2017 ◽  
Vol 827 ◽  
pp. 357-393 ◽  
Author(s):  
W. Yao ◽  
R. K. Jaiman

We present an effective reduced-order model (ROM) technique to couple an incompressible flow with a transversely vibrating bluff body in a state-space format. The ROM of the unsteady wake flow is based on the Navier–Stokes equations and is constructed by means of an eigensystem realization algorithm (ERA). We investigate the underlying mechanism of vortex-induced vibration (VIV) of a circular cylinder at low Reynolds number via linear stability analysis. To understand the frequency lock-in mechanism and self-sustained VIV phenomenon, a systematic analysis is performed by examining the eigenvalue trajectories of the ERA-based ROM for a range of reduced oscillation frequency $(F_{s})$, while maintaining fixed values of the Reynolds number ($Re$) and mass ratio ($m^{\ast }$). The effects of the Reynolds number $Re$, the mass ratio $m^{\ast }$ and the rounding of a square cylinder are examined to generalize the proposed ERA-based ROM for the VIV lock-in analysis. The considered cylinder configurations are a basic square with sharp corners, a circle and three intermediate rounded squares, which are created by varying a single rounding parameter. The results show that the two frequency lock-in regimes, the so-called resonance and flutter, only exist when certain conditions are satisfied, and the regimes have a strong dependence on the shape of the bluff body, the Reynolds number and the mass ratio. In addition, the frequency lock-in during VIV of a square cylinder is found to be dominated by the resonance regime, without any coupled-mode flutter at low Reynolds number. To further discern the influence of geometry on the VIV lock-in mechanism, we consider the smooth curve geometry of an ellipse and two sharp corner geometries of forward triangle and diamond-shaped bluff bodies. While the ellipse and diamond geometries exhibit the flutter and mixed resonance–flutter regimes, the forward triangle undergoes only the flutter-induced lock-in for $30\leqslant Re\leqslant 100$ at $m^{\ast }=10$. In the case of the forward triangle configuration, the ERA-based ROM accurately predicts the low-frequency galloping instability. We observe a kink in the amplitude response associated with 1:3 synchronization, whereby the forward triangular body oscillates at a single dominant frequency but the lift force has a frequency component at three times the body oscillation frequency. Finally, we present a stability phase diagram to summarize the VIV lock-in regimes of the five smooth-curve- and sharp-corner-based bluff bodies. These findings attempt to generalize our understanding of the VIV lock-in mechanism for bluff bodies at low Reynolds number. The proposed ERA-based ROM is found to be accurate, efficient and easy to use for the linear stability analysis of VIV, and it can have a profound impact on the development of control strategies for nonlinear vortex shedding and VIV.


2017 ◽  
Vol 39 (2) ◽  
pp. 97-108
Author(s):  
Van-The Tran

In the conventional hobbing process, a double-crowned involute helical gear is generated by the hob cutter with parabolic-curve tooth profiles for the cross-profile crowning and varied the center distance between the hob and work gear for the longitudinal crowning. Therefore, to cut a double-crowned helical gear not only requires at least four synchronous axes and hob cutter regrinding (which increases production costs) but also induces twisted tooth flanks on the generated work gear. In this paper, I propose a hobbing method by applying a modified work gear rotation angle that enables double-crowning of involute helical gear's tooth flanks using a standard hob cutter and a computer numerical control (CNC) hobbing machine with only three synchronous axes. The proposed method has also verified by using two computer simulation examples to compare the meshing-conditions, contact ellipses, and transmission errors of the double-crowned gear pairs with that produced by applying the conventional hobbing method. Computer simulation results reveal the advantages of the proposed novel hobbing method.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5485
Author(s):  
Rajendra S. Rajpoot ◽  
Shanmugam. Dhinakaran ◽  
Md. Mahbub Alam

The present study deals with the numerical simulation of mixed convective heat transfer from an unconfined heated square cylinder using nanofluids (Al2O3-water) for Reynolds number (Re) 10–150, Richardson number (Ri) 0–1, and nanoparticles volume fractions (φ) 0–5%. Two-phase modelling approach (i.e., Eulerian-mixture model) is adopted to analyze the flow and heat transfer characteristics of nanofluids. A square cylinder with a constant temperature higher than that of the ambient is exposed to a uniform flow. The governing equations are discretized and solved by using a finite volume method employing the SIMPLE algorithm for pressure–velocity coupling. The thermo-physical properties of nanofluids are calculated from the theoretical models using a single-phase approach. The flow and heat transfer characteristics of nanofluids are studied for considered parameters and compared with those of the base fluid. The temperature field and flow structure around the square cylinder are visualized and compared for single and multi-phase approaches. The thermal performance under thermal buoyancy conditions for both steady and unsteady flow regimes is presented. Minor variations in flow and thermal characteristics are observed between the two approaches for the range of nanoparticle volume fractions considered. Variation in φ affects CD when Reynolds number is varied from 10 to 50. Beyond Reynolds number 50, no significant change in CD is observed with change in φ. The local and mean Nusselt numbers increase with Reynolds number, Richardson number, and nanoparticle volume fraction. For instance, the mean Nusselt number of nanofluids at Re = 100, φ = 5%, and Ri = 1 is approximately 12.4% higher than that of the base fluid. Overall, the thermal enhancement ratio increases with φ and decreases with Re regardless of Ri variation.


Sign in / Sign up

Export Citation Format

Share Document