Effects of Nonlinear Riser-Soil Interaction Model on Fatigue Design of Steel Catenary Riser Under Random Waves

Author(s):  
Mehrdad Kimiaei

Steel Catenary Risers (SCRs) are one of the main components in development of oil and gas fields in deep waters. Fatigue design of SCRs in touch down zone (TDZ) is one of the main engineering challenges in design of riser systems. Nonlinear riser-soil interaction models have recently been introduced and used widely in advanced structural analysis of SCRs. Due to hysteretic nonlinear behavior of the soil, SCR system will show different structural response under different loading time histories. This paper investigates the effects of nonlinear riser-soil interaction in the TDZ on fatigue performance of an example SCR subjected to randomly generated waves. Sensitivity of fatigue life of the system, location of the critical node and the maximum stress range to different wave realizations and different soil types are discussed in detail.

Author(s):  
Stephen J. Maddox ◽  
Julian B. Speck ◽  
G. Reza Razmjoo

Increasing deep-water oil and gas recovery has highlighted the need for high integrity, high fatigue performance girth welds in steel catenary riser systems. Such systems include girth welds made from one side. However, the widely used fatigue design classification, UK Class F2, for such welds is not well founded, but probably overconservative for pipeline welds. In an attempt to justify upgrading current fatigue design classifications and providing a better basis for design, fatigue tests were performed on a range of girth-welded pipes produced by pipeline welding contractors. This paper presents the results of those tests and their evaluation in terms of the factors that influence the fatigue performance of girth welds, including welding process, welding position, backing system, joint alignment, weld quality, specimen type, and fatigue loading conditions. Conclusions are drawn regarding the scope for adopting higher design classifications and the conditions that must be met to justify them.


Author(s):  
Stephen J. Maddox ◽  
Julian B. Speck ◽  
G. Reza Razmjoo

Increasing deep-water oil and gas recovery has highlighted the need for high integrity, high fatigue performance girth welds in steel catenary riser systems. Such systems include girth welds made from one side. However, the widely used fatigue design classification, UK Class F2, for such welds is not well founded, but probably over-conservative for pipeline welds. In an attempt to justify upgrading current fatigue design classifications and providing a better basis for design, fatigue tests were performed on a range of girth-welded pipes produced by pipeline welding contractors. This paper presents the results of those tests and their evaluation in terms of the factors that influence the fatigue performance of girth welds, including welding process, welding position, backing system, joint alignment, weld quality, specimen type and fatigue loading conditions. Conclusions are drawn regarding the scope for adopting higher design classifications and the conditions that must be met to justify them.


Author(s):  
Solomon C. Yim ◽  
Dongjun Yuk ◽  
Arvid Naess ◽  
I-Ming Shih

A semianalytical method is developed for the stochastic analysis of a nonlinear moored ocean structure subjected to narrow band random waves. The method is then used to investigate the probability distribution of extreme values of the responses. To verify the accuracy and capability of the method in handling complex nonlinear behavior of the nonlinear moored ocean structure, experimental results are employed to calibrate numerical simulations and the resulting probability distributions obtained from the semianalytical method. A nonlinear-structure nonlinearly damped model is employed to model the moored structure considered and the system coefficients are identified through the reverse multiple-input/single-output technique. An examination of the comparisons indicates that the structural response extreme value probability distributions obtained from the semianalytical predictions are quite accurate.


Author(s):  
Solomon C. Yim ◽  
Dongjun Yuk ◽  
Arvid Naess ◽  
I.-Ming Shih

A semi-analytical method is developed for the stochastic analysis of a nonlinear moored ocean structure subjected to narrowband random waves. The method is then used to investigate the probability distribution of extreme values of the responses. To verify the accuracy and capability of the method in handling complex nonlinear behavior of the nonlinear moored ocean structure, experimental results are employed to calibrate numerical simulations and the resulting probability distributions obtained from the semi-analytical method. A nonlinear-structure nonlinearly damped model is employed to model the moored structure considered and the system coefficients are identified through the reverse multiple-input/single-output technique. An examination of the comparisons indicates that the structural response extreme value probability distributions obtained from the semi-analytical predictions are quite accurate.


Author(s):  
Hany Elosta ◽  
Shan Huang ◽  
Atilla Incecik

A steel catenary riser (SCR) attached to a floating platform at its upper end encounters oscillations in and near its touchdown zone (TDZ), which results in interaction with the seabed. Field observations and design analysis of SCRs show that the highest stress and greatest fatigue damage occurred near the touchdown point where the SCR first touches the seabed soil. The challenges regarding the fatigue damage assessment of an SCR in the TDZ are primarily because of the nonlinear behavior of SCR–seabed interaction and considerable uncertainty in seabed interaction modeling and geotechnical parameters. Analysis techniques have been developed in the two main areas: SCR–seabed interaction modeling and the influence of the uncertainty in the geotechnical parameters on the dynamic response and fatigue performance of SCRs in the TDZ. Initially, this study discusses the significance of SCR–seabed interaction on the response of an SCR for deepwater applications when subjected to random waves on soft clay using the commercial code OrcaFlex for nonlinear time domain simulation. In the next step, this study investigates the sensitivity of fatigue performance to geotechnical parameters through a parametric study. It is proven that employing the improved lateral SCR–seabed interaction model with accurate prediction of soil stiffness and riser penetration with cyclic loading enables us to obtain dynamic global riser performance in the TDZ with better accuracy. The fatigue analyses results prove that the confounding results indicated by the previous research studies on the SCR in the TDZ are due to different geotechnical parameters imposed with the seabed interaction model. The main benefit of employing nonlinear seabed approach is to capture the entity of realistic soil interaction behavior in modeling and analysis and to predict the likelihood of the fatigue damage of the SCR with seabed interaction, thereby minimizing the risk of the loss of the containment with the associated environmental impact.


Author(s):  
Iris Rommerskirchen ◽  
Thomas Schu¨ller ◽  
Brigitte Blechinger ◽  
Gernot Heigl

The deep-water development of oil and gas fields in water depths of more than 1.000 meters represents a major technical challenge. The reserves of a gas-crude oil-water-sand mixture under the seabed must be transported safely to the top, both from an economic and environmental point of view.


CIM Journal ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 195-214
Author(s):  
G. J. Simandl ◽  
C. Akam ◽  
M. Yakimoski ◽  
D. Richardson ◽  
A. Teucher ◽  
...  

Author(s):  
A.V. Antonov ◽  
◽  
Yu.V. Maksimov ◽  
A.N. Korkishko ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document