A Transient Inflow Performance Relationship (IPR) for the Early and Late Life of Gas Wells: The Dynamic Gas IPR

Author(s):  
Pedro Cavalcanti de Sousa ◽  
Artur G. Posenato ◽  
Paulo J. Waltrich

This paper presents an alternative form of IPR, called in this study “Gas Dynamic IPR” (GDIPR), and compares it with the performance of conventional Inflow Performance Relationships (IPR) for gas reservoirs. The main objective of the GDIPR is to provide a simple but robust IPR solution for gas wells under transient conditions for the early and late life of gas reservoirs. Conventional IPR models are often not able to capture transient effects for the late life of gas reservoirs. The GDIPR solution, on the other hand, can be used for the cases of buildup and drawdown tests (early life), and for the modeling of transient liquid loading phenomena in gas wells (late life). The GDIPR is compared to conventional IPR models in two case studies. The comparison analysis show that the conventional IPR models do not provide reliable results, while the GDIPR is in agreement with the solution from discretized reservoir models. The GDIPR technique is computationally less expensive than discretized reservoir models, and is able to capture both the transient well behavior and the steady-state solution, for early and late life of gas reservoirs.

2021 ◽  
Vol 73 (07) ◽  
pp. 57-57
Author(s):  
Leonard Kalfayan

As unconventional oil and gas fields mature, operators and service providers are looking toward, and collaborating on, creative and alternative methods for enhancing production from existing wells, especially in the absence of, or at least the reduction of, new well activity. While oil and gas price environments remain uncertain, recent price-improvement trends are supporting greater field testing and implementation of innovative applications, albeit with caution and with cost savings in mind. Not only is cost-effectiveness a requirement, but cost-reducing applications and solutions can be, too. Of particular interest are applications addressing challenging well-production needs such as reducing or eliminating liquid loading in gas wells; restimulating existing, underperforming wells, including as an alternative to new well drilling and completion; and remediating water blocking and condensate buildup, both of which can impair production from gas wells severely. The three papers featured this month represent a variety of applications relevant to these particular well-production needs. The first paper presents a technology and method for liquid removal to improve gas production and reserves recovery in unconventional, liquid-rich reservoirs using subsurface wet-gas compression. Liquid loading, a recurring issue downhole, can severely reduce gas production and be costly to remediate repeatedly, which can be required. This paper discusses the full technology application process and the supportive results of the first field trial conducted in an unconventional shale gas well. The second paper discusses the application of the fishbone stimulation system and technique in a tight carbonate oil-bearing formation. Fishbone stimulation has been around for several years now, but its best applications and potential have not necessarily been fully understood in the well-stimulation community. This paper summarizes a successful pilot application resulting in a multifold increase in oil-production rate and walks the reader through the details of the pilot candidate selection, completion design, operational challenges, and lessons learned. The third paper introduces and proposes a chemical treatment to alleviate phase trapping in tight carbonate gas reservoirs. Phase trapping can be in the form of water blocking or increasing condensate buildup from near the wellbore and extending deeper into the formation over time. Both can reduce relative permeability to gas severely. Water blocks can be a one-time occurrence from drilling, completion, workover, or stimulation operations and can often be treated effectively with solvent plus proper additive solutions. Similar treatments for condensate banking in gas wells, however, can provide only temporary alleviation, if they are even effective. This paper proposes a technique for longer-term remediation of phase trapping in tight carbonate gas reservoirs using a unique, slowly reactive fluid system. Recommended additional reading at OnePetro: www.onepetro.org. SPE 200345 - Insights Into Field Application of Enhanced-Oil-Recovery Techniques From Modeling of Tight Reservoirs With Complex High-Density Fracture Network by Geng Niu, CGG, et al. SPE 201413 - Diagnostic Fracture Injection Test Analysis and Simulation: A Utica Shale Field Study by Jeffery Hildebrand, The University of Texas at Austin, et al.


Author(s):  
Tao Zhu ◽  
Jing Lu

Many gas reservoirs are with bottom water drive. In order to prevent or delay unwanted water into the wellbore, the producing wells are often completed as partially penetrating vertical wells, and more and more horizontal wells have been drilled in recent years in bottom water drive gas reservoirs to reduce water coning and increase productivity. For a well, non-Darcy flow is inherently a near wellbore phenomenon. In spite of the considerable study that non-Darcy behavior of fully penetrating vertical wells, there has been no study of a partially penetrating vertical well or a horizontal well in a gas reservoir with bottom water drive. This paper presents new binomial deliverability equations for partially penetrating vertical gas wells and horizontal gas wells, assuming that only radial flow occurs in the near wellbore non-Darcy’s flow domain. The inflow performance of a vertical gas well is compared with that of a horizontal gas well. The proposed equations can account for the advantages of horizontal gas wells.


2021 ◽  
Vol 2 (2) ◽  
pp. 125-135
Author(s):  
Temitayo Sheriff Adeyemi ◽  
Deborah Oluwatosin Rufus

Attempts had been made by many authors to develop an inflow performance relationship model suitable for solution gas drive reservoirs. However, they have not been as successful as most of the developed models suffer from certain degrees of inaccuracies and this necessitates the need for an improved model as the economic analysis of an oilfield greatly depends on the ability to accurately forecast future productions. Therefore, the objective of this research is to develop an improved inflow Performance Relationship model for solution gas reservoirs by employing a purely analytical approach and also compare the performance of the developed model with that of the existing IPR models (Vogel, Wiggins, Fetkovich, and Klins and Majher). A series expansion of the pseudo-steady state solution of the equation that governs fluid flow in reservoirs of radial geometry is obtained using Taylor's method and the infinite series obtained is truncated after a reasonable number of terms to ensure high degree of accuracy while also avoiding computational complexity. Moreover, the unknown coefficients in the truncated series were determined using the available reservoir fluid data. Finally, statistical analysis was carried out to determine the degree of deviation of the new and existing IPR models from the actual IPR. This analysis shows that the improved model (with an average coefficient of determination of 0.97) outperforms the existing IPR models to which it was compared. Therefore, the improved model is recommended for situations where extreme accuracy is of utmost importance. Doi: 10.28991/HEF-2021-02-02-04 Full Text: PDF


SPE Journal ◽  
2016 ◽  
Vol 21 (02) ◽  
pp. 471-487 ◽  
Author(s):  
Juntai Shi ◽  
Zheng Sun ◽  
Xiangfang Li

Summary Liquid loading is a key issue in gas reservoirs with horizontal wells and multiple hydraulic fractures, especially for shale-gas reservoirs. Field results show that only 15–30% of the original fracturing fluid is recovered. Most liquid is trapped in the rock matrix near the fracture face and induced fractures. Water flowback from reservoir to wellbore and liquid loading from wellbore to surface are two main factors affecting the recovery of the original fracturing fluid. Significant efforts have been made to understand the effect of liquid loading on well performance, and some models have been proposed to describe the liquid loading. However, these models ignore the effect of liquid-drop size and its shape change with size. The falling liquid is nearly spherical in shape when its diameter is smaller than 2 mm, but when larger than 2 mm, it will change to be a half-hamburger in shape. Hence, ignoring the liquid-drop size and its shape change with size will lead to inaccurate calculations of the critical liquid-loading-flow rate. In this study, we conduct several groups of experiments to examine the liquid-droplet-shape change with liquid-droplet size in a gas-flow wellbore with different inclined angles. Similar to the falling liquid in air, larger liquid droplets are half-hamburger in shape (like the top half of the bun, flat on bottom and round on top). On the basis of this phenomenon, we propose analytical models to describe the critical liquid loading in vertical, slanted, and horizontal wellbores by considering the size and shape of liquid drops. Also, we validate this model by use of field data from the Daniudi gas field, and apply the proposed model to evaluate the liquid-loading problem in the Marcellus shale. Results show that the ratio of the liquid-drop height/width is a strong function of the liquid-drop width. Both the maximum and minimum ratios are determined: The maximum is unity, representing the shape of a sphere; the minimum is 0.3765; and the liquid drop is unstable when the ratio is less than 0.3765. In addition, the liquid drop with the minimum ratio is most easily loaded and produced from the vertical wellbore of gas wells. The key coefficient of B in the model of critical liquid-loading-flow velocity—vg = B[σ(ρl–ρg)/ρg2]0.25—is a function of the width of the liquid drop. The range of B is quantified as from 1.54 to 2.5. In the slanted wellbore of gas wells, the critical liquid-loading gas-flow velocity is related to the angle β, the slant angle, and the width of the liquid droplet. In the horizontal wellbore of gas wells, the critical liquid-loading gas-flow velocity is a function of the width of the liquid droplet. The models proposed in this work can accurately calculate the critical liquid-loading-flow rate for multifractured horizontal gas wells. This study can provide critical insights into the understanding of the liquid flowback and its effect on well productivity in gas reservoirs.


2021 ◽  
Author(s):  
Harshil Saradva ◽  
Siddharth Jain ◽  
Christna Golaco ◽  
Armando Guillen ◽  
Kapil Kumar Thakur

Abstract Sharjah National Oil Corporation (SNOC) operates 4 onshore fields the largest of which has been in production since the 1980's. The majority of wells in the biggest field have a complex network of multilaterals drilled using an underbalanced coiled tubing technique for production enhancement in early 2000s. The scope of this project was to maximize the productivity from these wells in the late life by modelling the dynamic flow behaviour in a simulator and putting that theory to the test by recompleting the wells. A comprehensive multilateral wellbore flow study was undertaken using dynamic multiphase flow simulator to predict the expected improvement in well deliverability of these mature wells, each having 4-6 laterals (Saradva et al. 2019). The well laterals have openhole fishbone completions with one parent lateral having subsequent numerous sub-laterals reaching further into the reservoir with each lateral between 500-2000ft drilled to maximize the intersection with fractures. Complexity in simulation further increased due to complex geology, compositional simulation, condensate banking and liquid loading with the reservoir pressure less than 10% of original. The theory that increasing wellbore diameter by removing the tubing reduces frictional pressure loss was put to test on 2 pilot wells in the 2020-21 workover campaign. The results obtained from the simulator and the actual production increment in the well aligned within 10% accuracy. A production gain of 20-30% was observed on both the wells and results are part of a dynamic simulation predicting well performance over their remaining life. Given the uncertainties in the current PVT, lateral contribution and the fluid production ratios, a broad range sensitivity was performed to ensure a wide range of applicability of the study. This instils confidence in the multiphase transient simulator for subsurface modelling and the workflow will now be used to expand the applicability to other well candidates on a field level. This will result in the opportunity to maximize the production and net revenues from these gas wells by reducing the impact of liquid loading. This paper discusses the detailed comparison of the actual well behaviour with the simulation outcomes which are counterproductive to the conventional gas well development theory of utilizing velocity strings to reduce liquid loading. Two key outcomes from the project are observed, the first is that liquid loading in multilaterals is successfully modelled in a dynamic multiphase transient simulator instead of a typical nodal analysis package, all validated from a field pilot. The second is the alternative to the conventional theory of using smaller tubing sizes to alleviate gas wells liquid loading, that high velocity achieved through wellhead compression would allow higher productivity than a velocity string in low pressure late life gas condensate wells.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Jing Lu ◽  
Shawket Ghedan ◽  
Tao Zhu ◽  
Djebbar Tiab

Many gas reservoirs are with bottom water drive. In order to prevent or delay unwanted water into the wellbore, the producing wells are often completed as partially penetrating vertical wells, and more and more horizontal wells have been drilled in recent years in bottom water drive gas reservoirs to reduce water coning and increase productivity. For a well, non-Darcy flow is inherently a near wellbore phenomenon. In spite of the considerable study that non-Darcy behavior of fully penetrating vertical wells, there has been no study of a partially penetrating vertical well or a horizontal well in a gas reservoir with bottom water drive. This paper presents new binomial deliverability equations for partially penetrating vertical gas wells and horizontal gas wells, assuming that only radial flow occurs in the near wellbore non-Darcy’s flow domain. The inflow performance of a vertical gas well is compared with that of a horizontal gas well. The proposed equations can account for the advantages of horizontal gas wells.


Author(s):  
E. D. Nennie ◽  
J. P. de Boer ◽  
W. Schiferli

Various Dutch operators have identified a need for increased application of deliquification measures in their North Sea wells. To help meet this need a Joint Industry Project (JIP) was set up to identify knowledge and experience gained in the United States on gas well deliquification and transfer this to European wells. In the first phase of the project a broad overview of the techniques used to deliquify gas wells suffering from liquid loading was made together with a set of available guidelines predicting the range of application. Having identified potential techniques, a selection tool was developed which suggests the most suitable deliquification technique for a given well. The selection tool can predict the gains in production and ultimate recovery resulting from applying a range of techniques. The selection tool is based on Tubing Performance Curve (TPC) analysis combined with Inflow Performance Relationship (IPR) analysis; performance therefore depends on the pressure drop over the wellbore (as modelled in the TPC) and on reservoir characteristics. For each of these techniques, a model was available or developed to simplify their operating principles to a TPC. Results from this tool can aid in deciding which deliquification technique to implement, as it gives a clear overview of the production gain that can be expected for the different techniques [8].


2021 ◽  
Vol 26 (3) ◽  
pp. 245
Author(s):  
Chuan Xie ◽  
Chunyu Xie ◽  
Yulong Zhao ◽  
Liehui Zhang ◽  
Yonghui Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document