Instrumented Wellhead Load Relief System for Shallow Water Arctic Conditions: Paper 1 — System Design, Installation and Preliminary Results

Author(s):  
Scott Benson ◽  
Massimiliano Russo ◽  
Eivind Rasten ◽  
Ward Avery ◽  
Paul LeGrow ◽  
...  

In recent years, lower oil prices have forced many oil companies to reduce capex costs by revitalizing brown fields, rather than developing new green fields. At the same time, the offshore drilling rig market has seen many old rigs, typically used for shallow water operations, being scrapped, leaving new generation, deep and ultra-deep water MODUs as the only viable option for new drilling campaigns. Based on the above, wellhead fatigue on older assets, especially in harsh, shallow water environments, has started to gain a central role during the planning phases of workover and intervention operations. In recent years, Suncor Energy began investigating an extension to its Terra Nova field, which began production in 2002. The field uses subsea wells tied back to an FPSO which is moored in 95m of water off Canada’s eastern Grand Banks, an area frequented by icebergs. Drilling operations for the field extension were planned to commence in summer 2017, and continue with a year-round drilling campaign using a Cat 6 MODU. Since the extension would involve sidetracks and interventions from existing wellheads, a series of wellhead fatigue studies were undertaken using a variety of industry recognized methodologies [1] to understand the levels of fatigue accumulation. Although there has been no evidence of wellhead fatigue damage, Suncor chose to take a very prudent and proactive approach, aimed at minimizing fatigue, and maintaining fatigue life for potential future drilling operations. An Instrumented Wellhead Load Relief (iWLR) system was installed, which is designed to restrain BOP motions, thereby reducing the wellhead loads considerably. The load reduction system virtually eliminates additional fatigue accumulation for the planned operations. Additionally, the instrumentation system enables the precise monitoring and tracking of loads applied at the wellhead for future analysis. This paper describes the engineering challenges needed to develop and install the iWLR system in a harsh, shallow water, arctic environment. This area is characterized by very stiff soils pitted with iceberg scours, where subsea equipment must be protected within 10m deep excavated drill centers to prevent iceberg collisions in the relatively shallow water. Additionally, the paper describes how the instrumentation system was integrated with the BOP MUX cable communication system, for the first time, to enable real time monitoring of BOP motions using high accuracy gyroscopes and load cells which monitor dynamic iWLR tether forces. A topside data gathering and processing system was developed to present wellhead loads based on the indirect method, with new algorithms established to account for the tether forces. Finally, the paper presents some preliminary high-level results, showing the efficiency of the system based on measured data.

Author(s):  
Arne Gu¨rtner ◽  
Ove Tobias Gudmestad ◽  
Alf To̸rum ◽  
Sveinung Lo̸set

Recent discoveries of hydrocarbons in the shallow waters of the Northern Caspian Sea arise the need for intensive drilling activities to be carried out in the near future in order to explore the potentials. Experience with mobile drilling units in the seasonally ice infested waters solely originates from the current drilling campaign of the Sunkar drilling barge at Kashagan and Kalamkas. However, with increased drilling activities upcoming, innovative drilling concepts are desirable due to the objective of maintaining drilling operations during the ice period with conventional non-ice-resistant drilling platforms. Hence, this paper suggests the employment of external Shoulder Ice Barriers (SIBs) to protect a conventional jack-up drilling rig from the hazards of drifting ice in shallow water. The SIB’s design is suggested to increase the ice rubble generation at the ice facing slope and thereby provide sufficient protection from drifting ice impacts. The modular concept of the SIB makes it possible to deploy each module in a floating mode to site, whereupon they are ballasted and connected to each other, forming a sheltered position for the jack-up. Subsequent to the termination of the drilling campaign the SIB modules may be retrieved by de-ballasting and tow out, without having significant impact on the environment. This paper presents, on a technical feasible level, the concept of ice protection in shallow water by means of SIBs.


Author(s):  
Rohit Vaidya ◽  
Mahesh Sonawane

Abstract Traditionally, shallow water wells have been drilled from fixed platforms, jack-ups or moored drilling rigs. Recently there has been increased interest in performing operations on these wells using new generation of Dynamically Positioned (DP) rigs, driven by available capacity of these rigs and environmental regulations that restrict laying anchors on the seabed. Shallow water offshore drilling operations present a set of unique challenges and these challenges are further amplified when operations are performed on older wells with legacy conductor hardware with newer DP vessels and larger BOPs. The objective of the paper is to present challenges that occur during drilling in shallow water and discuss mitigation options to make these operations feasible through a series of case studies. Key challenges to optimizing riser operability and rig uptime are discussed. Potential modifications to the upper riser stack-up and rig deck structure for maximizing operational uptime are discussed. Riser system weak point assessment is presented along with solutions for mitigating risks in case the wellhead or conductor structural pipe is identified as the weak link. Selection of the drilling rig can have significant impact on wellhead fatigue response. Some criteria for rig selection based on drilling riser and wellhead system performance is presented with the objective of optimizing the fatigue performance of the wellhead and conductor system. Wellhead fatigue monitoring solutions in combination with physical fatigue mitigation options are presented to enable operations for fatigue critical wells.


1973 ◽  
Vol 11 (3) ◽  
pp. 480
Author(s):  
J. M. Killey

As onshore oil and gas deposits are becoming more difficult to locate, and as the world demands for energy continue to increase at an alarming rate, oil companies are channeling much of their exploration activities towards offshore operations, and in particular, towards operations centered off Canada's coast lines. Because of the environment, offshore drilling presents problems which are novel to the onshore-geared oil industry. J. M. Killey discusses in detail many of the considerations involved in drafting the offshore drilling contract, concentrating on problems such as the liability of the various parties; costs; scheduling; pollution; conflict of laws; etc. Similarly, he discusses service contracts (such as supply boat charters; towing services; helicopter services; etc.^ which are necessity to the operation of an offshore drilling rig. To complement his paper, the author has included number of appendices which list the various considerations lawyer must keep in mind when drafting contracts for offshore operations.


2014 ◽  
Vol 599-601 ◽  
pp. 1407-1410
Author(s):  
Xu Liang ◽  
Ke Ming Wang ◽  
Gui Yu Xin

Comparing with other High-level programming languages, C Sharp (C#) is more efficient in software development. While MATLAB language provides a series of powerful functions of numerical calculation that facilitate adoption of algorithms, which are widely applied in blind source separation (BSS). Combining the advantages of the two languages, this paper presents an implementation of mixed programming and the development of a simplified blind signal processing system. Application results show the system developed by mixed programming is successful.


Author(s):  
Celso K. Morooka ◽  
Raphael I. Tsukada ◽  
Dustin M. Brandt

Subsea equipment such as the drilling riser and the subsea Blow-Out Preventer (BOP) are mandatory in traditional systems used in deep sea drilling for ocean floor research and petroleum wellbore construction. The drilling riser is the vertical steel pipe that transfers and guides the drill column and attached drilling bit into a wellbore at the sea bottom. The BOP is used to protect the wellbore against uncontrolled well pressures during the offshore drilling operation. Presently, there is a high level of drilling activity worldwide and in particular in deeper and ultra-deeper waters. This shift in depth necessitates not only faster drilling systems but drilling rigs upgraded with a capacity to drill in the deep water. In this scenario, two general drilling systems are today considered as alternatives: the traditional system with the subsea BOP and the alternate system with the surface BOP. In the present paper, the two systems are initially described in detail, and a numerical simulation in time domain to estimate the system behavior is presented. Simulations of a floating drilling rig coupled with the subsea and surface BOP in waves and current are carried out for a comparison between the two methods. Results are shown for riser and BOP displacements. Critical riser issues for the systems are discussed, comparing results from both drilling system calculations. Conclusions are addressed showing advantages and disadvantages of each drilling system, and indicating how to correct the problems detected on each system.


2017 ◽  
Vol 7 (1) ◽  
pp. 29
Author(s):  
Charles Afam Anosike

Environmental degradation and socioeconomic dilemma continue to affect agricultural productivity in the Niger Delta of Nigeria. Several works of literature confirm the high level of pollution and contamination of land and water as a result of over 50 years of oil production in the region. The effects of environmental pollution continue to aggravate the hardship of the local people, which generates development friction, threaten oil operation, and mutually contrive relational efforts, by so invoking mistrust between oil companies and the host communities. Sustainability programs of oil companies often provide the channel to engage and promote community relations from which projects are conceived and executed. Despite sustainability efforts of oil companies, the region continues to experience oil spills and environmental degradation.Hence, the current research explores the sustainability efforts of a multinational oil company to establish whether the company’s leadership makes environmental considerations and to identify possible corrections that could be adopted to achieve sustainable value. For this purpose, the paper employed a single case study approach using open-ended interview sessions in collecting data. Research data were gathered from a sample of 20 experienced sustainability practitioners of the oil company, partnering nonprofit organizations, and community leaders through face-to-face semi-structured interviews. Data were segmented and categorized. The data analysis process revealed several themes regarding the challenges and shortfalls of sustainability programs in the region. The evidence found suggests that implementing a transparent and inclusive sustainability management system is essential to enable a systems view in contemplating sustainability programs. In so doing, oil MNCs leaders could enable effective environmental consideration in their sustainability programs to help reinvigorate productive agriculture and ensure continuing oil operation.


Author(s):  
Alexandre Diezel ◽  
Germain Venero ◽  
Victor Gomes ◽  
Leandro Muniz ◽  
Rafael Fachini ◽  
...  

With the extension of the offshore drilling operations to water depths of 10,000 ft and beyond, the technical challenges involved also increased considerably. In this context, the management of the riser integrity through the application of computational simulations is capital to a safe and successful operation — particularly in harsh environments. One of the main challenges associated with keeping the system under safe limits is the recoil behavior in case of a disconnection from the well. The risk that an emergency disconnect procedure can take place during the campaign is imminent, either due to failure of the dynamic positioning system or due to extreme weather in such environments. Recent work [1] in the field of drilling riser dynamic analysis has shown that the recoil behavior of the riser after a disconnection from the bottom can be one of the main drivers of the level of top tension applied. Tension fluctuations can be very large as the vessel heaves, especially in ultra-deep waters where the average level of top tension is already very high. In order to be successful, a safe disconnection must ensure that the applied top tension is sufficient for the Lower Marine Riser Package (LMRP) to lift over the Blow-Out Preventer (BOP) with no risk of interference between the two. This tension should also not exceed a range in which the riser will not buckle due to its own recoil, that the telescopic joint will not collapse and transfer undesirable loads onto the drilling rig or that the tensioning lines will not compress. A good representation of such behavior in computational simulations is therefore very relevant to planning of the drilling campaign. A case study is presented herein, in which a recoil analysis was performed for a water depth of 11,483ft (3,500m). Numerical simulations using a finite element based methodology are applied for solving the transient problem of the riser disconnection in the time domain using a regular wave approach. A detailed hydro-pneumatic tensioning system model is incorporated to properly capture the effect of the anti-recoil valve closure and tension variations relevant during the disconnection. A reduction of conservativism is applied for the regular wave approach, where the maximum vessel heave likely to happen in every 50 waves is applied instead of the usual maximum in 1000 waves approach. ISO/TR 13624-2 [4] states that using the most probable maximum heave in 1000 waves is considered very conservative, as the event of the disconnection takes place in a very short period of time. The challenges inherent to such an extreme site are presented and conclusions are drawn on the influence of the overall level of top tension in the recoil behavior.


1988 ◽  
Vol 8 (4) ◽  
pp. 121-124 ◽  
Author(s):  
I.G. Brynko ◽  
I.A. Galkin ◽  
V.P. Grozov ◽  
N.I. Dvinskikh ◽  
S.M. Matyushonok ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document