Implementation of an Ultrasonic Cuttings Processing System for Drilling Operations at the Meltwater Field, North Slope, Alaska

2002 ◽  
Author(s):  
Thomas A. Brockway ◽  
Lloyd Andrews ◽  
Stan Caza ◽  
Dave Simpson
Author(s):  
Scott Benson ◽  
Massimiliano Russo ◽  
Eivind Rasten ◽  
Ward Avery ◽  
Paul LeGrow ◽  
...  

In recent years, lower oil prices have forced many oil companies to reduce capex costs by revitalizing brown fields, rather than developing new green fields. At the same time, the offshore drilling rig market has seen many old rigs, typically used for shallow water operations, being scrapped, leaving new generation, deep and ultra-deep water MODUs as the only viable option for new drilling campaigns. Based on the above, wellhead fatigue on older assets, especially in harsh, shallow water environments, has started to gain a central role during the planning phases of workover and intervention operations. In recent years, Suncor Energy began investigating an extension to its Terra Nova field, which began production in 2002. The field uses subsea wells tied back to an FPSO which is moored in 95m of water off Canada’s eastern Grand Banks, an area frequented by icebergs. Drilling operations for the field extension were planned to commence in summer 2017, and continue with a year-round drilling campaign using a Cat 6 MODU. Since the extension would involve sidetracks and interventions from existing wellheads, a series of wellhead fatigue studies were undertaken using a variety of industry recognized methodologies [1] to understand the levels of fatigue accumulation. Although there has been no evidence of wellhead fatigue damage, Suncor chose to take a very prudent and proactive approach, aimed at minimizing fatigue, and maintaining fatigue life for potential future drilling operations. An Instrumented Wellhead Load Relief (iWLR) system was installed, which is designed to restrain BOP motions, thereby reducing the wellhead loads considerably. The load reduction system virtually eliminates additional fatigue accumulation for the planned operations. Additionally, the instrumentation system enables the precise monitoring and tracking of loads applied at the wellhead for future analysis. This paper describes the engineering challenges needed to develop and install the iWLR system in a harsh, shallow water, arctic environment. This area is characterized by very stiff soils pitted with iceberg scours, where subsea equipment must be protected within 10m deep excavated drill centers to prevent iceberg collisions in the relatively shallow water. Additionally, the paper describes how the instrumentation system was integrated with the BOP MUX cable communication system, for the first time, to enable real time monitoring of BOP motions using high accuracy gyroscopes and load cells which monitor dynamic iWLR tether forces. A topside data gathering and processing system was developed to present wellhead loads based on the indirect method, with new algorithms established to account for the tether forces. Finally, the paper presents some preliminary high-level results, showing the efficiency of the system based on measured data.


SPE Journal ◽  
2007 ◽  
Vol 12 (04) ◽  
pp. 458-467 ◽  
Author(s):  
Quanxin Guo ◽  
Ahmed S. Abou-Sayed ◽  
Harold Robert Engel

Summary In April 1998, a program for continuous deep disposal of drill cuttings and open pit materials was initiated on the North Slope of Alaska. This ongoing injection project is commonly referred to as GNI, or "Grind and Inject." Accumulated drilling cuttings and mud slurry are injected into a receptive Cretaceous soft sandstone in three wells: GNI-1, GNI-2, and GNI-3. Typical operations involve injecting slurry into one of the three wells continuously for a number of days and then switching injection to another well. The average injection rate is approximately 30,000 B/D. As of 30 September 2002, project injection has included 12.7×106 bbl of water, 30.9×106 bbl of slurry containing 2.0×106 tons or 2.2×106 cubic yards of excavated frozen reserve pit material and drilling solids, and 1.31×106 bbl of fluid from ongoing drilling operations. Knowledge of the fate of the drilling and open-pit materials during injection is paramount to assure the safe containment of the disposed materials without harm to the environment. Numerical modeling, well testing (including step-rate and pressure-falloff testing), and logging surveys were performed periodically to assess the operational integrity of the disposal wells and to ensure the safe containment of the disposed waste slurry. The high-volume capacity of these injectors highlighted the mechanisms for slurry being accepted by multiple and branched fractures—part of the slurry went to previous fractures during subsequent batch injections. This paper will detail how to integrate numerical simulations, well testing/monitoring, and operational data to estimate storage capacity and construct a clear representation of what was happening underground during this GNI operation. The work has implications on other large drilling-waste injection projects worldwide. Introduction Early drill sites on the North Slope of Alaska were designed with reserve pits for surface storage of mud and cuttings from drilling operations. In 1993, the operator at the time agreed to remove the mud and cuttings from all reserve pits. Additionally, the practice of storing drilling mud and cuttings in surface reserve pits was discontinued. These waste streams are now managed as they are generated by way of injection, thus eliminating the need for surface reserve pits. The estimated total volume of reserve pit mud and cuttings to be managed by this process is over 5 million cubic yards (not including drilling mud and cuttings generated from ongoing drilling operations). After reviewing disposal options, slurry injection was selected as the preferred disposal technique to remediate the reserve pits. While drill cuttings injection projects have been operated worldwide since the early 1990s (Abou-Sayed et al. 1989; Malachosky et al. 1991; Sirevag and Bale 1993; Moschovidis et al. 1993). They were generally small in volume. Feasibility evaluation of large scale injection of oily waste injection in Alaska started in the late 1980s (Abou-Sayed et al. 1989). This field evaluation test also included a step-rate test, in-situ stress measurements, tiltmeter monitoring of ground surface deflections, and a wellbore hydraulic impedance test (Abou-Sayed et al. 1989). Approximately 2 million bbl of slurry, containing crude oil, unused frac sand, drilling muds, unset cement, and other elements, had been injected intermittently into this well at the time of the analysis. The injection rate varied from 500 to 4,000 B/D.


1983 ◽  
Vol 105 (1) ◽  
pp. 26-29 ◽  
Author(s):  
R. G. Finucane ◽  
R. L. Scher

During the winter of 1980–81, Exxon built about 16 km of floating ice roads in the Beaufort Sea off the north slope of Alaska. These roads were used to haul gravel and other materials for the construction of four offshore drillsites and to provide logistical support to subsequent exploration drilling operations. Ice roads over tundra and grounded lake or sea ice have been used for many years in the Arctic. Over the past three years, exploration activities have progressed offshore to water depths where the sea ice is floating. This paper summarizes the procedures, equipment, and production rates achieved during the construction of our 1980–81 winter floating ice roads. Also presented are the results of performance tests on some of the various auger pumping systems presently available.


Author(s):  
J. Hefter

Semiconductor-metal composites, formed by the eutectic solidification of silicon and a metal silicide have been under investigation for some time for a number of electronic device applications. This composite system is comprised of a silicon matrix containing extended metal-silicide rod-shaped structures aligned in parallel throughout the material. The average diameter of such a rod in a typical system is about 1 μm. Thus, characterization of the rod morphology by electron microscope methods is necessitated.The types of morphometric information that may be obtained from such microscopic studies coupled with image processing are (i) the area fraction of rods in the matrix, (ii) the average rod diameter, (iii) an average circularity (roundness), and (iv) the number density (Nd;rods/cm2). To acquire electron images of these materials, a digital image processing system (Tracor Northern 5500/5600) attached to a JEOL JXA-840 analytical SEM has been used.


Author(s):  
A. V. Crewe ◽  
M. Ohtsuki

We have assembled an image processing system for use with our high resolution STEM for the particular purpose of working with low dose images of biological specimens. The system is quite flexible, however, and can be used for a wide variety of images.The original images are stored on magnetic tape at the microscope using the digitized signals from the detectors. For low dose imaging, these are “first scan” exposures using an automatic montage system. One Nova minicomputer and one tape drive are dedicated to this task.The principal component of the image analysis system is a Lexidata 3400 frame store memory. This memory is arranged in a 640 x 512 x 16 bit configuration. Images are displayed simultaneously on two high resolution monitors, one color and one black and white. Interaction with the memory is obtained using a Nova 4 (32K) computer and a trackball and switch unit provided by Lexidata.The language used is BASIC and uses a variety of assembly language Calls, some provided by Lexidata, but the majority written by students (D. Kopf and N. Townes).


Author(s):  
G.Y. Fan ◽  
J.M. Cowley

In recent developments, the ASU HB5 has been modified so that the timing, positioning, and scanning of the finely focused electron probe can be entirely controlled by a host computer. This made the asynchronized handshake possible between the HB5 STEM and the image processing system which consists of host computer (PDP 11/34), DeAnza image processor (IP 5000) which is interfaced with a low-light level TV camera, array processor (AP 400) and various peripheral devices. This greatly facilitates the pattern recognition technique initiated by Monosmith and Cowley. Software called NANHB5 is under development which, instead of employing a set of photo-diodes to detect strong spots on a TV screen, uses various software techniques including on-line fast Fourier transform (FFT) to recognize patterns of greater complexity, taking advantage of the sophistication of our image processing system and the flexibility of computer software.


Author(s):  
Rudolf Oldenbourg

The recent renaissance of the light microsope is fueled in part by technological advances in components on the periphery of the microscope, such as the laser as illumination source, electronic image recording (video), computer assisted image analysis and the biochemistry of fluorescent dyes for labeling specimens. After great progress in these peripheral parts, it seems timely to examine the optics itself and ask how progress in the periphery facilitates the use of new optical components and of new optical designs inside the microscope. Some results of this fruitful reflection are presented in this symposium.We have considered the polarized light microscope, and developed a design that replaces the traditional compensator, typically a birefringent crystal plate, with a precision universal compensator made of two liquid crystal variable retarders. A video camera and digital image processing system provide fast measurements of specimen anisotropy (retardance magnitude and azimuth) at ALL POINTS of the image forming the field of view. The images document fine structural and molecular organization within a thin optical section of the specimen.


Author(s):  
P. Pradère ◽  
J.F. Revol ◽  
R. St. John Manley

Although radiation damage is the limiting factor in HREM of polymers, new techniques based on low dose imaging at low magnification have permitted lattice images to be obtained from very radiation sensitive polymers such as polyethylene (PE). This paper describes the computer averaging of P4MP1 lattice images. P4MP1 is even more sensitive than PE (total end point dose of 27 C m-2 as compared to 100 C m-2 for PE at 120 kV). It does, however, have the advantage of forming flat crystals from dilute solution and no change in d-spacings is observed during irradiation.Crystals of P4MP1 were grown at 60°C in xylene (polymer concentration 0.05%). Electron microscopy was performed with a Philips EM 400 T microscope equipped with a Low Dose Unit and operated at 120 kV. Imaging conditions were the same as already described elsewhere. Enlarged micrographs were digitized and processed with the Spider image processing system.


Author(s):  
S. Lehner ◽  
H.E. Bauer ◽  
R. Wurster ◽  
H. Seiler

In order to compare different microanalytical techniques commercially available cation exchange membrane SC-1 (Stantech Inc, Palo Alto), was loaded with biologically relevant elements as Na, Mg, K, and Ca, respectively, each to its highest possible concentration, given by the number concentration of exchangeable binding sites (4 % wt. for Ca). Washing in distilled water, dehydration through a graded series of ethanol, infiltration and embedding in Spurr’s low viscosity epoxy resin was followed by thin sectioning. The thin sections (thickness of about 50 nm) were prepared on carbon foils and mounted on electron microscopical finder grids.The samples were analyzed with electron microprobe JXA 50A with transmitted electron device, EDX system TN 5400, and on line operating image processing system SEM-IPS, energy filtering electron microscope CEM 902 with EELS/ESI and Auger spectrometer 545 Perkin Elmer.With EDX, a beam current of some 10-10 A and a beam diameter of about 10 nm, a minimum-detectable mass of 10-20 g Ca seems within reach.


Sign in / Sign up

Export Citation Format

Share Document