Manoeuvring Study of a Container Ship in Shallow Water Waves

Author(s):  
Manases Tello Ruiz ◽  
Marc Mansuy ◽  
Guillaume Delefortrie ◽  
Marc Vantorre

When approaching or leaving a port a ship often needs to perform manoeuvres in the presence of waves. At the same time the water depth is still limited for deep drafted vessels. For manoeuvring simulation purposes this requires a manoeuvring model which includes phenomena such as short crested waves and squat effects. The present paper addresses the manoeuvring problem in shallow water waves numerically and experimentally. The numerical study is conducted by means of potential theory, incorporating first and second order exciting wave forces, and their superposition to the calm water manoeuvring models. The applicability of such an approach is also investigated. The experimental work has been conducted at Flanders Hydraulics Research (in cooperation with Ghent University) with a scale model of an ultra large container vessel. Captive model tests comprise harmonic yaw tests and steady straight line tests with and without waves, at different forward speeds, wave frequencies and amplitudes, in head and following waves. Waves are chosen to represent conditions commonly met by ships in the Belgian coastal zone of the North Sea.

Author(s):  
Manases Tello Ruiz ◽  
Marc Mansuy ◽  
Luca Donatini ◽  
Jose Villagomez ◽  
Guillaume Delefortrie ◽  
...  

Abstract The influence of waves on ship behaviour can lead to hazardous scenarios which put at risk the ship, the crew and the surroundings. For this reason, investigating the effect of waves on manoeuvring is of relevant interest. Waves may impair the overall manoeuvring performance of ships hence increasing risks such as collisions, which are of critical importance when considering dense traffic around harbour entrances and in unsheltered access channels. These are conditions met by Ultra Large Container Ships (ULCS) when approaching a port, e.g. in the North Sea access channels to the main sea ports of Belgium. Note that due to the large draft of ULCS and the limited water depth, shallow water effects will also influenced the ship. Thus, in such scenarios the combined effects of shallow water and waves on the ship’s manoeuvring need to be studied. The present work investigates the effect of waves on the turning ability of an ULCS in shallow water. Simulations are carried out using the two time scale approach. The restricted water depth corresponds to 50% Under Keel Clearance (UKC). To gain a better insight on the forces acting on the ship, the propulsion, and the rudder behaviour in waves experimental studies were conducted. These tests were carried out in the Towing Tank for Manoeuvres in Confined Water at Flanders Hydraulics Research (in co-operation with Ghent University) with a scale model of an ULCS. Different wave lengths, wave amplitudes, ships speeds, propeller rates, and rudder angles were tested. The turning ability characteristics obtained from simulations in waves and calm water are presented, and discussed.


2006 ◽  
Author(s):  
Claudio Zanzi ◽  
Pablo Go´mez ◽  
Julia´n Palacios ◽  
Joaqui´n Lo´pez ◽  
Julio Herna´ndez

A numerical study of the impact of shallow-water waves on vertical walls is presented. The air-liquid flow was simulated using a code for incompressible viscous flow, based on a local level set algorithm and a second-order approximate projection method. The level set transport and reinitialization equations were solved in a narrow band around the interface using an adaptive refined grid. The wave is assumed to be generated by a plunger which is accelerated in an open channel containing water. An arbitrary Lagrangian-Eulerian method was used to take into account the relative movement between the plunger and the end wall of the channel. The evolution of the free surface was visualized using a laser light sheet and a high-speed camera, with a sampling frequency of 1000 Hz. Several simulations were carried out to investigate the influence of the shape of the wave approaching the wall on the relevant quantities associated with the impact. The wave shape just before the impact was changed varying the total length of the channel. The results are compared with experimental results and with results obtained by other authors.


Wave Motion ◽  
2014 ◽  
Vol 51 (1) ◽  
pp. 157-167 ◽  
Author(s):  
Jinhai Zheng ◽  
Gang Wang ◽  
Guohai Dong ◽  
Xiaozhou Ma ◽  
Yuxiang Ma

Author(s):  
Rujian Ma ◽  
Guixi Li ◽  
Dong Zhao ◽  
Jungang Wang

An experimental study of wave forces on the vertical cylinders in shallow waters was carried out in a wave channel. The wave parameters, wave forces and wave pressures are measured and studied in the paper. The study indicates that the distribution of wave pressures of the shallow water waves can be described by an exponential function with respect to water depth. The maximum surface elevation for shallow water waves can be estimated using the significant wave height. The wave pressure around circumference can be expressed as a simple form of cosine function. An experimental formula for the calculation of wave forces on vertical cylinders is proposed. As compared with test data, the predicted wave forces showed good agreement and high reliability. The calculated wave forces by different wave theories are less than those of the proposed method. Therefore, the wave force calculation method for shallow water waves should be modified for engneering applications.


Author(s):  
Shin-ichi AOKI ◽  
Tomoki HAMANO ◽  
Taishi NAKAYAMA ◽  
Eiichi OKETANI ◽  
Takahiro HIRAMATSU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document