Potentials of Nano-Designed Plugs: Implications for Short and Long Term Well Integrity

Author(s):  
Raymos Kimanzi ◽  
Harshkumar Patel ◽  
Mahmoud Khalifeh ◽  
Saeed Salehi ◽  
Catalin Teodoriu

Abstract Cement plugs are designed to protect the integrity of oil and gas wells by mitigating movement of formation fluids and leaks. A failure of the cement sheath can result in the loss of zonal isolation, which can lead to sustained casing pressure. In this study, nanosynthetic graphite with designed expansive properties has been introduced to fresh cement slurry. The expansive properties of nanosynthetic graphite were achieved by controlling the preparation conditions. The material was made from synthetic graphite and has a surface area ranging from 325–375 m2/gram. Several tests including compressive strength, rheology, and thickening time were performed. An addition of 1% nanosynthetic graphite with appropriate reactivity was sufficient to maintain expansion in the cement system, leading to an early compressive strength development. It has excellent thermal and electrical conductivity and can be used to design a cement system with short and long-term integrity. Rheology and thickening time tests confirmed its pumpability. Controlling the concentration of the additive is a promising method that can be used to mitigate gas migration in gas bearing and shallow gas formations.

2021 ◽  
Author(s):  
Bipin Jain ◽  
Abhijeet Tambe ◽  
Dylan Waugh ◽  
Moises MunozRivera ◽  
Rianne Campbell

Abstract Several injection wells in Prudhoe Bay, Alaska exhibit sustained casing pressure (SCP) between the production tubing and the inner casing. The diagnostics on these wells have shown communication due to issues with casing leaks. Conventional cement systems have historically been used in coiled-tubing-delivered squeeze jobs to repair the leaks. However, even when these squeeze jobs are executed successfully, there is no guarantee in the short or long term that the annular communication is repaired. Many of these injector wells develop SCP in the range of 300-400 psi post-repair. It has been observed that the SCP development can reoccur immediately after annulus communication repair, or months to years after an injector well is put back on injection. Once SCP is developed the well cannot be operated further. A new generation of cement system was used to overcome the remedial challenge presented in these injector wells. This document provides the successful application of a specialized adaptive cement system conveyed to the problematic zone with the advantage of using coiled tubing equipment for optimum delivery of the remedial treatment.


2014 ◽  
Vol 11 (6) ◽  
pp. 597-604 ◽  
Author(s):  
Mileva Radonjic ◽  
Arome Oyibo

Wellbore cement has been used to provide well integrity through zonal isolation in oil and gas wells as well as geothermal wells. Failures of wellbore cement result from either or both: inadequate cleaning of the wellbore and inappropriate cement slurry design for a given field/operational application. Inadequate cementing can result in creation of fractures and microannuli, through which produced fluids can migrate to the surface, leading to environmental and economic issues such as sustained casing pressure, contamination of fresh water aquifers and, in some cases, well blowout. To achieve proper cementing, the drilling fluid should be completely displaced by the cement slurry, providing clean interfaces for effective bond. This is, however, hard to achieve in practice, which results in contaminated cement mixture and poor bonds at interfaces. This paper reports findings from the experimental investigation of the impact of drilling fluid contamination on the shear bond strength at the cement-formation and the cement-casing interfaces by testing different levels of contamination as well as contaminations of different nature (physical vs. chemical). Shear bond test and material characterization techniques were used to quantify the effect of drilling fluid contamination on the shear bond strength. The results show that drilling fluid contamination is detrimental to both cement-formation and cement-casing shear bond strength.


2021 ◽  
Author(s):  
Maxim Viktorovich Miklyaev ◽  
Ivan Vyacheslavovich Denisov ◽  
Ivan Mikhailovich Gavrilin

Abstract Well construction in the Volga-Ural Region faces different sorts of complications, the most common ones being the loss of drilling fluids and rockslides. Such complications may cause considerable financial losses due to non-productive time (NPT) and longer well construction periods. Moreover, there are complications, which might occur both during well construction and during its exploitation. The commonest complications are sustained casing pressure (SCP) and annular flow. The complications, which occur when operating a well, also have a negative effect on the economic efficiency of well operation and call for additional actions, for example, repair and insulation works, which require well shutdown and killing, though a desired outcome still cannot be guaranteed; moreover, it is possible that several different operations may have to be carried out. In addition, the occurrence of SCP during well life is one of the most crucial problems that may cause well abandonment due to high risks posed by its operation. It is known that the main reasons for SCP are as follows: Channels in cement stone Casing leaks Leaks in wellhead connections To resolve the problem of cement stone channeling, several measures were taken, such as revising cement slurry designs, cutting time for setting strings on slips, applying two-stage cementing, etc. These measures were not successful, besides, they caused additional expenses for extra equipment (for example, a cementer). In order to reduce the risk of cement stone channeling, a cementing method is required that will allow to apply excess pressure on cement slurry during the period of transition and early strength development. To achieve this goal, a well-known method of controlled pressure cementing may be applied. Its main drawback, however, is that it requires much extra equipment, thus increasing operation expenses. In addition, the abovementioned method allows affecting the cement stone only during the operation process and / or during the waiting on cement (WOC) time. Upon receiving the results of the implemented measures and considering the existing technologies and evaluating the economic efficiency, the need was flagged for developing a combined cementing method. The goal of this method is to modify the production string cementing method with a view to applying excess pressure on cement stone during strength development and throughout the well lifecycle. The introduction of this lining method does not lead to an increase in well construction costs and considerably reduces the risks of losing a well from the production well stock.


2021 ◽  
Author(s):  
Elizaveta Bakhareva ◽  
Vasilii Sukhachev ◽  
Alexander Sozonov ◽  
Anastasia Zinovyeva ◽  
Olesya Olennikova ◽  
...  

Abstract Zonal isolation for primary cementing is generally of concern when there is potential for gas migration. The challenge for the industry is to achieve a long-term annular cement seal and prevent gas migration. This paper focuses on the problem of ensuring sufficient bulk expansion of set cement without access to external water and optimizing the cement slurry formulation. The approach to solving this problem is creative and simple within the industry. One of the reasons for wellbore gas migration and inter-connected flows can be due to cement shrinkage over time. This study focuses on laboratory testing of an expanding cement system in the absence of water and analysis of test results of novel the cement system in terms of its implementation on well with high gas migration potential. The cement system behavior will also be described in terms of rheological, filtration and mechanical properties and compared to conventional expanding cement slurries. This approach can be used to improve cement bonding with the aim of minimizing future remedial jobs. Several approaches were implemented to achieve noticeable expansion in anhydrous media. One of the methods showed it was feasible to achieve 1.27% linear expansion in set cement without external water contact, while linear expansion in the presence of water was 0.78%. This method uses the addition of sodium chloride (NaCl) and while it has been previously described in literature, no practical design/testing directions have been given. The study identified the most effective concentration of sodium chloride required for set cement expansion without water availability. The study described how other cement system properties permitted better results in terms of placement quality of highly salt-saturated cement. Overall, complex laboratory test results provide evidence of effective linear expansion in set cement in the absence of external water. The optimization of cement slurry properties was focused on obtaining optimal thickening time, rheology and compressive strength, which was complicated by the presence of a high concentration of sodium chloride. An expanding cement system was successfully tested in the absence of water showing positive linear expansion. A new approach for testing expanding cement systems in the absence of water was introduced how excessive linear expansion could be compromised with compressive strength development. The research results have shown that the use of NaCl additive in high concentrations in high SVF self-healing systems provided improved performance when aiming for effective linear expansion in set cement in the absence of water.


2021 ◽  
Author(s):  
Animesh Kumar ◽  
Devesh Bhaisora ◽  
Mikhil Dange

Abstract Cellulose, the one of the most abundant biomaterials available in nature, is a polymer with cellobiose as the smallest repeating unit, with a degree of polymerization that can go up to 1000 for wood cellulose. The strength-to-weight ratio of nanocellulose is eight times greater than steel (Patchiya Phanthong et al). Nanocellulose in suspension (NCS) at a varied concentration helps increase properties of cement without changing the density of the cement slurry. Being mindful of challenges in oil and gas wells, efforts were made to enhance cement properties using nanocellulose within conventional and water-extended cement systems. Samples of 15.8-ppg conventional and 12 ppg water-extended cements were prepared by varying the proportion of nanocellulose within an aqueous suspension. Rheology, sedimentation, compressive strength and mechanical properties were analyzed for a conventional 15.8-ppg cement system with varying NCS proportions of 0, 2, 4, and 5% by weight of cement (BWOC). Similar work was performed for a 12 ppg water-extended cement system by varying NCS differently in proportions of 0, 5, 10, and 20% BWOC. Two-inch cubes were set at 170°F for 24 hours for each sample. They were crushed using hydraulic crush compressive strength equipment, and the force used to break the sample was recorded. Compressive strength for this cement system was measured to be 2450, 3250, 3450, and 3875 psi, respectively, for samples with 0, 2, 4, and 5% BWOC concentrations of NCS. An increase in the strength of cement with an increase in NCS percentage was observed for the 15.8-ppg slurry design, which may be attributed to the size and shape of the NCS. However, similar study carried out with 12 ppg water extended slurries showed decrease in overall compressive strength. Nano-sized particles fill the pores within the sample, impacting structural network development. Additionally, cellulose, having a fiber-like structure, may provide inter-particulate reinforcement. Based on the results of the 15.8-ppg cement system and the high tensile strength of nanocellulose, it can be determined that NCS has a positive effect for increasing mechanical properties. By applying nanocellulose, a tailored cement system (dependable barrier) can be designed to minimize risk and maximize production from oil and gas wells. Nanocellulose is of increasing interest for a range of applications relevant to the fields of material science and biomedical engineering because of its renewable nature, anisotropic shape, excellent mechanical properties, good biocompatibility, tailorable surface chemistry, and interesting optical properties. Low-volume NCS additions can alter the structure of the cured cement system and increase its mechanical properties. This reinforcing mechanism may provide a new opportunity for achieving higher strength cementitious materials.


2021 ◽  
Author(s):  
Emmanuel Therond ◽  
Yaseen Najwani ◽  
Mohamed Al Alawi ◽  
Muneer Hamood Al Noumani ◽  
Yaqdhan Khalfan Al Rawahi ◽  
...  

Abstract The Khazzan and Ghazeer gas fields in the Sultanate of Oman are projected to deliver production of gas and condensate for decades to come. Over the life of the project, around 300 wells will be drilled, with a target drilling and completion time of 42 days for a vertical well. The high intensity of the well construction requires a standardized and robust approach for well cementing to deliver high-quality well integrity and zonal isolation. The wells are designed with a surface casing, an intermediate casing, a production casing or production liner, and a cemented completion. Most sections are challenging in terms of zonal isolation. The surface casing is set across a shallow-water carbonate formation, prone to lost circulation and shallow water flow. The production casing or production liner is set across fractured limestones and gas-bearing zones that can cause A- and B-Annulus sustained casing pressure if not properly isolated. The cemented completion is set across a high-temperature sandstone reservoir with depletion and the cement sheath is subjected to very high pressure and temperature variations during the fracturing treatment. A standardized cement blend is implemented for the entire field from the top section down to the reservoir. This blend works over a wide slurry density and temperature range, has expanding properties, and can sustain the high temperature of the reservoir section. For all wells, the shallow-water flow zone on the surface casing is isolated by a conventional 11.9 ppg lightweight lead slurry, capped with a reactive sodium silicate gel, and a 15.8 ppg cement slurry pumped through a system of one-inch flexible pipes inserted in the casing/conductor annulus. The long intermediate casing is cemented in one stage using a conventional lightweight slurry containing a high-performance lost circulation material to seal the carbonate microfractures. The excess cement volume is based on loss volume calculated from a lift pressure analysis. The cemented completion uses a conventional 13.7 - 14.5 ppg cement slurry; the cement is pre-stressed in situ with an expanding agent to prevent cement failure when fracturing the tight sandstone reservoir with high-pressure treatment. Zonal isolation success in a high-intensity drilling environment is assessed through key performance zonal isolation indicators. Short-term zonal isolation indicators are systematically used to evaluate cement barrier placement before proceeding with installing the next casing string. Long-term zonal isolation indicators are used to evaluate well integrity over the life of the field. A-Annulus and B-Annulus well pressures are monitored through a network of sensors transmitting data in real time. Since the standardization of cementing practices in the Khazzan field short-term job objectives met have increased from 76% to 92 % and the wells with sustained casing pressure have decreased from 22 % to 0%.


Author(s):  
Wytze Sloterdijk ◽  
Martin Hommes ◽  
Roelof Coster ◽  
Troy Rovella ◽  
Sarah Herbison

As part of Pacific Gas and Electric Company’s (PG&E) on-going commitment to public safety, the company has begun a comprehensive engineering validation of its gas transmission facilities that will ultimately support the reconfirmation of maximum allowable operating pressure (MAOP) for these assets. In addition to 6,750 miles of line pipe, PG&E’s gas transmission system contains over 500 station facilities. Since this set of facilities is not only large but diverse, and the validation effort for these facilities is expected to be an extensive, multi-year process, a methodology for the prioritization of the facilities needed to be developed to facilitate planning of the process for the efficient mitigation of risk. As a result, DNV GL was retained to develop and implement a risk-based prioritization methodology to prioritize PG&E’s gas transmission facilities for the engineering validation and MAOP reconfirmation effort. Ultimately, a weighted multiple criteria decision analysis (MCDA) approach was selected and implemented to generate the prioritization. This MCDA approach consisted of the selection of relevant criteria (threats) and the weighting of these criteria according to their relative significance to PG&E’s facilities. Relevant criteria selected for inclusion in the analysis include factors that are important in order to assess both the short- and long-term integrity of the facility as a whole as well as the integrity of features for which design records cannot be located. The criteria selected encompass stable threats, time-dependent threats, as well as environmental impact. Enormous amounts of data related to design, operations, maintenance history and meteorological and seismic activity in addition to other environmental data were evaluated with this newly developed methodology to assess the relative risks of the facilities. Pilot field visits were performed to validate the selection of the various criteria and to confirm the outcome of the analysis. The novelty of this approach lies in the prioritization of facilities in a coherent risk-based manner. The described approach can be used by operators of oil and gas facilities, either upstream, midstream or downstream.


SPE Journal ◽  
2017 ◽  
Vol 22 (05) ◽  
pp. 1681-1689 ◽  
Author(s):  
Narjes Jafariesfad ◽  
Mette Rica Geiker ◽  
Pål Skalle

Summary The bulk shrinkage of cement sheaths in oil wells can result in loss of long-term zonal isolation. Expansive additives are used to mitigate bulk shrinkage. To compensate effectively for bulk shrinkage during the late plastic phase and the hardening phase of the cement system, the performance of the expansive additive needs to be regulated considering the actual cement system and placement conditions. This paper presents an introductory investigation on the potential engineering of nanosized magnesium oxide (MgO) (NM) through heat treatment for use as an expansive agent in oilwell-cement systems. In this study, the bulk shrinkage of a cement system was mitigated by introducing NM with designed reactivity to the fresh cement slurry. The reactivity of NM was controlled by heat treatment. A dilatometer with corrugated molds was used to measure the linear strain of samples cured at 40°C and atmospheric pressure. The effect of NMs differing in reactivity on tensile properties of cement systems cured for 3 days at 40°C was examined by use of the flattened Brazilian test. The reactivity of the NM played a key role in controlling the bulk shrinkage of the cement system. Addition of only 2% NM by weight of cement (BWOC) with appropriate reactivity was sufficient to maintain expansion of the cement system. Adding NM to the cement system also resulted in improved mechanical flexibility. The NM with highest reactivity caused the largest reduction in Young's modulus at 3 days and, in general, the ratio of tensile strength to Young's modulus improved through the addition of NM to the cement system. Our work demonstrates that controlling the reactivity of the additive is a promising method to mitigate bulk shrinkage of cement systems and thereby to sustain the mechanical properties of the cement sheath in the oil well at an acceptable level.


2021 ◽  
pp. 147-156
Author(s):  
Ali M. Hadi ◽  
Ayad A. Al-Haleem

Cement is a major component in oil and gas drilling operations that is used to maintain the integrity of boreholes by preventing the movement of formation fluids through the annular space and outside the casing. In 2019, Iraq National Oil Company ordered all international oil and gas companies which are working in Iraq to use Iraqi cement (made in Iraq) in all Iraqi oil fields; however, the X-ray fluorescence (XRF) and compressive strength results in this study show that this cement is not matching with American Petroleum Institute (API) standards. During this study, barolift was used to improve the properties of Iraqi cement used in oil wells at high pressure and high temperature (HPHT). Barolift (1 g) was added to cement admixture to evaluate its influence on improving the performance of cement, mainly related to the property of toughness.  Primarily, the quality and quantity of cement contents were determined using X-ray fluorescence. Experiments were conducted to examine the characteristics of the base cement and the cement system containing 1g of barolift, such as thickening time, free water, compressive strength, and porosity. X-ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive X-ray spectroscopy (EDS) were conducted for analyzing the microstructure of cement powder. The experimental results showed that barolift acted as a retarder and improved the thickening time, slightly increased the free water, enhanced the mechanical properties, reduced the porosity, and aided in scheming new cement slurry to withstand the HPHT conditions. Microstructure analysis showed that barolift particles blocked the capillaries by filling cement spaces and, thus, a denser and stricter cement network was achieved.


Sign in / Sign up

Export Citation Format

Share Document