Numerical Simulation of Damaged Ship’s Motion in Beam Waves

2019 ◽  
Author(s):  
Qing Wang ◽  
Xuanshu Chen ◽  
Liwei Liu ◽  
Xianzhou Wang ◽  
MingJing Liu

Abstract The dangerous situation caused by the breakage of the ship will pose a serious threat to crew and ship safety. If the ship’s liquid cargo or fuel leaks, it will cause serious damage to the marine environment. If damage occurs accompanied by roll and other motions, it may cause more dangerous consequences. It is an important issue to study the damaged ship in time-domain. In this paper, the motions of the damaged DTMB 5512 in calm water and regular beam waves are studied numerically. The ship motions are analyzed through CFD methods, which are acknowledged as a reliable approach to simulate and analyze these complex physical phenomena. An in-house CFD (computational fluid dynamics) code HUST-Ship (Hydrodynamic Unsteady Simulation Technology for Ship) is used for solving RANS equations coupled with six degrees of freedom (6DOF) solid body motion equations. RANS equations discretized by finite difference method and solved by PISO algorithm. Level set was used for free surface simulation. The dynamic behavior of model was observed in both intact and damaged condition. The heave, roll and pitch amplitudes of the damaged ship were studied in calm water and beam wave of three wavelengths.

2012 ◽  
Vol 2012 ◽  
pp. 1-11
Author(s):  
Ray-Qing Lin ◽  
Tim Smith ◽  
Michael Hughes

This is the continuation of our research on development of a fully nonlinear, dynamically consistent, numerical ship motion model (DiSSEL). In this study we will report our results in predicting ship motions in unsteady maneuvering in calm water. During the unsteady maneuvering, both the rudder angle, and ship forward speed vary with time. Therefore, not only surge, sway, and yaw motions occur, but roll, pitch and heave motions will also occur even in calm water as heel, trim, and sinkage, respectively. When the rudder angles and ship forward speed vary rapidly with time, the six degrees-of-freedom ship motions and their interactions become strong. To accurately predict the six degrees-of-freedom ship motions in unsteady maneuvering, a universal method for arbitrary ship hull requires physics-based fully-nonlinear models for ship motion and for rudder forces and moments. The numerical simulations will be benchmarked by experimental data of the Pre-Contract DDG51 design and an Experimental Hull Form. The benchmarking shows a good agreement between numerical simulations by the enhancement DiSSEL and experimental data. No empirical parameterization is used, except for the influence of the propeller slipstream on the rudder, which is included using a flow acceleration factor.


2021 ◽  
Author(s):  
Weigang Huang ◽  
Tao He ◽  
Jiawei Yu ◽  
Qing Wang ◽  
Xianzhou Wang

Abstract It is of great significance to study the tank sloshing, especially the coupling motion between tank sloshing and ship in waves with strong non-linearity and randomness. In this study, the response of the ship with/without tank in regular wave is studied by EFD method and CFD method. All the simulations are carried out by in-house CFD code HUST-Ship (hydrodynamic unsteady simulation technology of ship) to solve RANS equations coupled with six degrees of freedom solid body motion equations. RANS equations are solved by finite difference method and PISO algorithm. A two-equation Shear Stress Transport (SST) k-w turbulence model is used. The simulation results are in good agreement with the experimental results, which also indicates that the result of the tank sloshing simulated by in-house CFD code is reliable. The influence of sloshing on ship motions is estimated by comparing the experimental results between the ship with/without tank in different wave conditions. The coupling motion characteristics between the liquid in the tank and the ship is further studied by the CFD method. The study shows that the influence of tank sloshing on ship motion is different under the action of different regular waves.


1991 ◽  
Author(s):  
G. K. Kapsenberg

A new experimental technique is presented to test sailing yachts in waves. The method is suitable for the investigation of ship motions in all six degrees of freedom and added resistance for the close hauled condition. Measurements can be made both in regular waves and in irregular seas. The technique has been tried out on a model of a 12-Meter class yacht and showed a resistance increase for the yacht sailing to windward in a wind generated sea of 90% of the calm water resistance.


2018 ◽  
Author(s):  
Heng Zhang ◽  
Hang Zhang ◽  
Xuanshu Chen ◽  
Hao Liu ◽  
Xianzhou Wang

Making CFD with the capability of predicting ship scale design performance, rather than relying on scale model tests will help reduce design costs and provide a greater opportunity to develop more energy efficient ship designs. The key objective of this paper is to perform a fully nonlinear unsteady RANS simulation to predict the ship motions and resistance of a full scale DTMB 5415 ship model. The analyses are performed at design speeds, at a certain Fr number, using in-house computational fluid dynamics (CFD) to solve RANS equation coupled with six degrees of freedom (6DOF) solid body motion equations. RANS equations are solved by finite difference method and PISO arithmetic. Computations have been made using structured grid with overset technology. Simulation results shown that the total resistance coefficient in calm water at service speed is predicted by 2.36% error compared to the related towing tank results. The ship resistance for different scale demonstrated that the current in-house CFD model could predict the resistance in a reasonable range of the EFD data. The comparison of flow field for wave pattern for different scale model were analyzed and discussed.


2005 ◽  
Vol 49 (02) ◽  
pp. 69-79 ◽  
Author(s):  
Ming-Chung Fang ◽  
Jhih-Hong Luo ◽  
Ming-Ling Lee

In the paper, a simplified six degrees of freedom mathematical model encompassing calm water maneuvering and traditional seakeeping theories is developed to simulate the ship turning circle test in regular waves. A coordinate system called the horizontal body axes system is used to present equations of maneuvering motion in waves. All corresponding hydrodynamic forces and coefficients for seakeeping are time varying and calculated by strip theory. For simplification, the added mass and damping coefficients are calculated using the constant draft but vary with encounter frequency. The nonlinear mathematical model developed here is successful in simulating the turning circle of a containership in sea trial conditions and can be extended to make the further simulation for the ship maneuvering under control in waves. Manuscript received at SNAME headquarters February 19, 2003; revised manuscript received January 27, 2004.


1970 ◽  
Vol 14 (04) ◽  
pp. 317-328 ◽  
Author(s):  
E. O. Tuck

The problem discussed concerns small motions of a ship, in all six degrees of freedom, but at zero speed of advance, due to an incident wave system in shallow water of depth comparable with the ship's draft. The problem is completely formulated for an arbitrary ship, and is partially solved for the case when the ship is slender and the wavelength much greater than the water depth. Sample numerical computations of heave, pitch, and sway added mass and damping coefficients and the sway exciting force are presented.


2015 ◽  
Author(s):  
Jeonghwa Seo ◽  
Cristobal Santiago Bravo ◽  
Shin Hyung Rhee

A series of tests using a course-keeping model ship with an autopilot system were carried out in a towing tank for research on Safe-Return-to-Port (SRTP). The autopilot system controls the rudder angle and propeller revolution rate by a feedback system. The variation of the heading angle of the test model with different control parameters was investigated first, to ensure that the test model had sufficient course-keeping maneuverability in severe wave conditions. The wave conditions and propeller revolution rate were selected based on SRTP regulations. Tests were conducted in wave conditions corresponding to sea states 4 to 6. The six-degrees-of-freedom motion response of the test model was measured by a wireless inertial measurement unit and gyro sensors to achieve fully wireless model tests. The advance speed and motion response in various wave conditions were measured and analyzed to investigate the effects of flooding behavior in a damaged condition and of waves on the propulsion and maneuvering performance of the damaged ship model.


1997 ◽  
Vol 119 (4) ◽  
pp. 707-717 ◽  
Author(s):  
Milovan Z˘ivanovic´ ◽  
Miomir Vukobratovic´

The procedure of modeling and the complete general form mathematical model of manipulators with six degrees of freedom in cooperative work are presented in the paper, together with the solution of undefiniteness problem with respect to force distribution. For the first time, a system of active spatial six-degree-of-freedom mechanisms elastically interconnected with the object (dynamic environment) is modeled. The reason for the emergence of the undefiniteness problem with respect to force is explained and the procedure for solving this problem given. Unlike the approaches given in the available literature, the undefiniteness problem with respect to force is solved in accordance with physical phenomena. The modeling procedure is illustrated by a simplified example.


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Chang-Wook Park ◽  
Jeonghwa Seo ◽  
Shin Hyung Rhee

A series of model tests of a caisson in wet towing were conducted in a towing tank to assess the stability and effective power requirement in calm water and head sea conditions. The scale ratio of the model was 1/30, and the model-length-based Froude number in the tests ranged from 0.061 to 0.122, which is equivalent to 2 and 4 knots in the full scale, respectively. During the towing of the model, tension on the towline and six-degrees-of-freedom (6DOF) motion of the model were measured. Under the calm water condition, the effects of towing speed, draft, and initial trim variation on the towing stability and effective power were investigated. Initial trim improved stability and reduced required towing power. In head seas, effective power and towing stability were changed with the wavelength. It increased as the wavelength became longer, but the added resistance in long waves also stabilized the model with reduced yaw motion.


Author(s):  
LiXiang Guo ◽  
JiaWei Yu ◽  
JiaJun Chen ◽  
KaiJun Jiang ◽  
DaKui Feng

It is critical to be able to estimate a ship’s response to waves, since the added resistance and loss of speed may cause delays or course alterations, with consequent financial repercussions. Traditional methods for the study of ship motions are based on potential flow theory without viscous effects. Results of scaling model are used to predict full-scale of response to waves. Scale effect results in differences between the full-scale prediction and reality. The key objective of this study is to perform a fully nonlinear unsteady RANS simulation to predict the ship motions and added resistance of a full-scale KRISO Container Ship. The analyses are performed at design speeds in head waves, using in house computational fluid dynamics (CFD) to solve RANS equation coupled with two degrees of freedom (2DOF) solid body motion equations including heave and pitch. RANS equations are solved by finite difference method and PISO arithmetic. Computations have used structured grid with overset technology. Simulation results show that the total resistance coefficient in calm water at service speed is predicted by 4 .68% error compared to the related towing tank results. The ship motions demonstrated that the current in house CFD model predicts the heave and pitch transfer functions within a reasonable range of the EFD data, respectively.


Sign in / Sign up

Export Citation Format

Share Document