Influence of Wind Shear Uncertainty in Long-Term Extreme Responses of an Offshore Monopile Wind Turbine

Author(s):  
David Barreto ◽  
Madjid Karimirad ◽  
Arturo Ortega

Abstract In the field of stochastic dynamics of marine structures, the determination of long-term extreme responses is a crucial aspect to ensure the desired level of structural reliability. The calculation of these responses requires precise knowledge of the environmental conditions and reliable methods to predict the values associated with a reliability target level. While there is a very precise method to determine the value of these extreme values, e. g. the full long-term analysis (FLTA), this approach is computationally expensive. Then, approximated methods are needed. One practical approach for the determination of the most relevant environmental conditions for extreme calculation is the environmental contour method (ECM). However, some limitations have been detected when this method is used for offshore structures that consider survival strategies e. g. offshore wind turbines (OWT). Lastly, a modified ECM procedure (MECM) has been developed with the purpose to bypass the limitations of the traditional ECM. This method is based on short-term simulations and through an iterative process by testing many environmental contours in the operational range allows finding an important wind speed with its corresponding return period and thus, the problem that traditional ECM has, is avoided. The environmental conditions, which are represented by a large number of parameters, are also an important aspect of extreme calculation. Whereas some of them are treated as stochastic values, some are considered deterministic and, therefore the existence of uncertainties in their measured/estimated values is inevitable. These uncertainties are addressed by adopting values recommended by standards and guidelines and, in practice, it is often necessary to be conservative when there is a lack of information about the specific site studied. Therefore, the understanding of the impact that these uncertainties can have on the loads/responses that govern the design of offshore structures, especially wind turbines, is of great relevance. In this work, the influence of uncertainty in the wind shear coefficient (WSC) is studied. This parameter is directly related to one critical environmental condition i. e. wind speed at hub height, and its influence in power production and fatigue loads has been documented in the literature, but, few cases have addressed their influence in bottom fixed OWT responses. This work seeks to highlight the relevance of an accurate selection of shear coefficient and, its influence on the probabilistic analysis of a bottom fixed OWT taking into account that considerable variations from recommended values may occur. Through the use of coupled simulations in FAST, the NREL 5MW wind turbine will be subjected to varying wind shear conditions, and the corresponding 50-yr long-term responses will be calculated considering the MECM to take into account the influence of the wind turbine survival mode. The extreme values are fitted from a Global Maxima Method (GMM). Finally, it is sought to relate the uncertainty in a relevant input parameter (i. e. WSC) with the uncertainties propagated to the output parameters (i. e. extrapolated long-term extreme responses).

Author(s):  
N. I. Mohd Zaki ◽  
M. K. Abu Husain ◽  
G. Najafian

Offshore structures are exposed to random wave loading in the ocean environment, and hence the probability distribution of the extreme values of their response to wave loading is of great value in the design of these structures. Due to nonlinearity of the drag component of Morison’s wave loading and also due to intermittency of wave loading on members in the splash zone, the response is often non-Gaussian; therefore, simple techniques for derivation of the probability distribution of extreme responses are not available. Monte Carlo time simulation technique can be used to derive the probabilistic properties of offshore structural response, but the procedure is computationally demanding. Finite-memory nonlinear system (FMNS) modeling of the response of an offshore structure exposed to Morison’s wave loading has been introduced to reduce the computational effort, but the predictions are not very good for low intensity sea states. To overcome this deficiency, a modified version of the FMNS technique (referred to as MFMNS modeling) was proposed which improves the accuracy, but is computationally less efficient than the FMNS modeling. In this study, the accuracy of the 100-year responses derived from the long-term probability distribution of extreme responses from FMNS and MFMNS methods is investigated.


Author(s):  
Remmelt J. van der Wal ◽  
Gerrit de Boer

Offshore operations in open seas may be seriously affected by the weather. This can lead to a downtime during these operations. The question whether an offshore structure or dredger is able to operate in wind, waves and current is defined as “workability”. In recent decades improvements have been made in the hydrodynamic modelling of offshore structures and dredgers. However, the coupling of these hydrodynamic models with methods to analyse the actual workability for a given offshore operation is less developed. The present paper focuses on techniques to determine the workability (or downtime) in an accurate manner. Two different methods of determining the downtime are described in the paper. The first method is widely used in the industry: prediction of downtime on basis of wave scatter diagrams. The second method is less common but results in a much more reliable downtime estimate: determination of the ‘job duration’ on basis of scenario simulations. The analysis using wave scatter diagrams is simple: the downtime is expressed as a percentage of the time (occurrences) that a certain operation can not be carried out. This method can also be used for a combination of operations however using this approach does not take into account critical events. This can lead to a significant underprediction of the downtime. For the determination of the downtime on basis of scenario simulations long term seastate time records are used. By checking for each subsequent time step which operational mode is applicable and if this mode can be carried out the workability is determined. Past events and weather forecast are taken into account. The two different methods are compared and discussed for a simplified offloading operation from a Catenary Anchor Leg Mooring (CALM) buoy. The differences between the methods will be presented and recommendations for further applications are given.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 2031
Author(s):  
Jongmin Cheon ◽  
Jinwook Kim ◽  
Joohoon Lee ◽  
Kichang Lee ◽  
Youngkiu Choi

This paper deals with the development of a wind turbine pitch control system and the construction of a Hardware-in-the-Loop-Simulation (HILS) testbed for the performance test of the pitch control system. When the wind speed exceeds the rated wind speed, the wind turbine pitch controller adjusts the blade pitch angles collectively to ensure that the rotor speed maintains the rated rotor speed. The pitch controller with the individual pitch control function can add individual pitch angles into the collective pitch angles to reduce the mechanical load applied to the blade periodically due to wind shear. Large wind turbines often experience mechanical loads caused by wind shear phenomena. To verify the performance of the pitch control system before applying it to an actual wind turbine, the pitch control system is tested on the HILS testbed, which acts like an actual wind turbine system. The testbed for evaluating the developed pitch control system consists of the pitch control system, a real-time unit for simulating the wind and the operations of the wind turbine, an operational computer with a human–machine interface, a load system for simulating the actual wind load applied to each blade, and a real pitch bearing. Through the several tests based on HILS test bed, how well the pitch controller performed the given roles for each area in the entire wind speed area from cut-in to cut-out wind speed can be shown.


Author(s):  
M. K. Abu Husain ◽  
N. I. Mohd Zaki ◽  
G. Najafian

Offshore structures are exposed to random wave loading in the ocean environment and hence the probability distribution of the extreme values of their response to wave loading is required for their safe and economical design. To this end, the conventional (Monte Carlo) time simulation technique (CTS) is frequently used for predicting the probability distribution of the extreme values of response. However, this technique suffers from excessive sampling variability and hence a large number of simulated extreme responses (hundreds of simulated response records) are required to reduce the sampling variability to acceptable levels. In this paper, three different versions of a more efficient time simulation technique (ETS) are compared by exposing a test structure to sea states of different intensity. The three different versions of the ETS technique take advantage of the good correlation between extreme responses and their corresponding surface elevation extreme values, or quasi-static and dynamic linear extreme responses.


Author(s):  
Y. Wang ◽  
H. Mallahzadeh ◽  
M. K. Abu Husain ◽  
N. I. Mohd Zaki ◽  
G. Najafian

Offshore structures are exposed to random wave loading in the ocean environment and hence the probability distribution of the extreme values of their response to wave loading is required for their safe and economical design. This paper investigates the suitability of the Gumbel, the Generalized Extreme Value (GEV), and the Generalized Pareto (GP) distributions for modelling of extreme responses by comparing them with empirical distributions derived from extensive Monte Carlo time simulations. It will be shown that none of these distributions can model the extreme values adequately but that a mixed distribution consisting of both GEV and GP distributions seems to be capable of modelling the extreme responses with very good accuracy.


2019 ◽  
Vol 15 (3) ◽  
pp. 1-12
Author(s):  
Emilian Boboc

Abstract Usually, wind turbine generator’s structures or radio masts are located in wind exposed sites. The paper aims to investigate the wind conditions in the nearby area of Cobadin Commune, Constanta County, Romania at heights of 150-200m above the surface using global reanalysis data sets CFSR, ERA 5, ERA I and MERRA 2. Using the extreme value theory and the physical models of the datasets, the research focuses on the assessment of the maximum values that are expected for the wind speeds, but the wind statistics created can be used for a further wind or energy yield calculation. Without reaching the survival wind speed for wind turbine generators, with mean wind speed values higher than 7 m/s and considering the cut-in and cut-out wind speeds of 3 m/s, respectively 25 m/s, the site can be exploited in more than 90% of the time to generate electricity, thus, the paper is addressed to the investors in the energy of renewable sources. At the same time, the insights of the wind characteristics and the knowledge of the extreme values of the wind speed can be useful, not just for the designers, in the rational assessment of the structural safety of wind turbines, but also those evaluating the insured losses.


2021 ◽  
Vol 2087 (1) ◽  
pp. 012035
Author(s):  
Ke Wan

Abstract Tower shadow effect and wind shear may cause power oscillation of the unit. In order to study the influence of tower shadow effect and wind shear on the output power of wind turbine, a doubly-fed turbine was taken as an example. Firstly, the influence of tower shadow effect and wind shear was considered to study the periodic power fluctuation characteristics of wind turbines. Then, according to the dynamic model of mechanical transmission mechanism, the influences of the inertia constants of generator, fan and the stiffness coefficient of the shaft system on the transient performance of the wind power generation system were considered respectively. Finally, a single machine infinite bus system model including wind speed model is built on PSCAD/EMTDC platform for simulation. The results show that the tower shadow effect and wind shear component can cause the power fluctuation of the turbine. When the power fluctuation frequency of the turbine is equal to the natural oscillation frequency of the wind turbine shafting, the resonance of the turbine occurs, and the amplitude of oscillation is the largest. Changing the transmission parameters will affect the power fluctuation amplitude and speed response speed of the unit.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1907 ◽  
Author(s):  
Ahmed G. Abo-Khalil ◽  
Saeed Alyami ◽  
Khairy Sayed ◽  
Ayman Alhejji

Large-scale wind turbines with a large blade radius rotates under fluctuating conditions depending on the blade position. The wind speed is maximum in the highest point when the blade in the upward position and minimum in the lowest point when the blade in the downward position. The spatial distribution of wind speed, which is known as the wind shear, leads to periodic fluctuations in the turbine rotor, which causes fluctuations in the generator output voltage and power. In addition, the turbine torque is affected by other factors such as tower shadow and turbine inertia. The space between the blade and tower, the tower diameter, and the blade diameter are very critical design factors that should be considered to reduce the output power fluctuations of a wind turbine generator. To model realistic characteristics while considering the critical factors of a wind turbine system, a wind turbine model is implemented using a squirrel-cage induction motor. Since the wind speed is the most important factor in modeling the aerodynamics of wind turbine, an accurate measurement or estimation is essential to have a valid model. This paper estimates the average wind speed, instead of measuring, from the generator power and rotating speed and models the turbine’s aerodynamics, including tower shadow and wind shear components, without having to measure the wind speed at any height. The proposed algorithm overcomes the errors of measuring wind speed in single or multiple locations by estimating the wind speed with estimation error less than 2%.


Sign in / Sign up

Export Citation Format

Share Document