Steam Generator Replacement Project at TVA’s Sequoyah Unit 1 Nuclear Power Plant

Author(s):  
Myron R. Anderson

Pressurized Water Reactor Power Plants have at times required that large components be replaced (steam generators weighing 750,000 lbs) which have necessitated performing first time modifications to the plant that were unintended during the original design. The steam generator replacement project at Tennessee Valley Authority (TVA’s) Sequoyah Nuclear Power Station necessitated (1) two large temporary openings (21’×45’) in the plant’s Shield Building roof (2’ thick concrete) by hydro-blasting to allow the removal of the old generators and installation of the new, (2) removal and repair of the concrete steam generator enclosure roofs (20’ diameter, 3’ thick) which were removed by wire saw cutting and (3) the seismic qualification of; the design and construction of an extensive ring foundation for; the use of one of the world largest cranes to remove these components through the roof. This removal and replacement process had to be performed in an expeditious manner to minimize the amount of time the plant is shutdown so the plant could return to providing power to the grid. This paper will address some of the many technical and construction considerations required to perform this demolition and repair work safely, efficiently and in a short as possible duration.

Author(s):  
Dilip Bhavnani ◽  
James Annett

One of the key maintenance activities in a nuclear power plant is the replacement of major components in the Nuclear Steam Supply System. In order to achieve significant operational improvements, the replacement components are not an exact replacement of the existing components. The replacement of components in the nuclear steam supply system in many Pressurized Water Reactor plants may include steam generators, replacement of reactor vessel heads with integrated head assemblies, and elimination of steam generator snubbers. The replacement components may not be supplied and/or designed by the original supplier. The changes in the components have to be compared to a plant’s current design and licensing bases and regulatory commitments. The qualification of these components involves non-linear, Nuclear Class 1 analyses, where portions of the configuration and analyses are proprietary, and there is a coupling of the response between the containment structure and the components. Ultimately, the qualification of the reactor coolant system and reactor vessel internals must be demonstrated, not just the qualification of the replacement components. A key element for the successful completion of these component replacements is the method by which the design and licensing bases is maintained and the work of the various groups involved in the design coordinated. This paper outlines how in a typical two unit PWR plant, major component replacements can impact original design bases and issues that should be considered in creating successful design and configuration documents. Design interface issues, configuration combinations, and coordination requirements are identified.


Author(s):  
Dae-Kwang Kim ◽  
Sung-Jin Han ◽  
Hak-Joon Kim ◽  
Sung-Jin Song ◽  
Yun-hang Choung

The SMART (System-integrated Modular Advanced ReacTor) is small sized integral type pressurized water reactor designed by KAERI (Korea Atomic Energy Research Institute), Korea. But, shape of steam generator (SG) in SMART plant differs from those in operated nuclear power plants (NPPs). Especially, SG tubes in SAMRT plant is helical type with around 600 mm of innermost diameter and thickness of 2.5 mm which is thicker than general NPPs one. For providing integrity of SG tube in SMART plant, new types of ECT method are needed because eddy current testing (ECT) is one of widely adopted method for inspection of SG tubes in NPPs. Therefore, in this study, we investigate optimal conditions or parameters for detecting and evaluating of flaws in the SG tubes in SMART plant by simulation of ECT signals with various testing condition or parameter such as frequency, coil gap and etc. From the simulated ECT signals optimal eddy current test condition or parameters are proposed.


Author(s):  
Jun Huang ◽  
Junli Gou ◽  
Haifu Ma ◽  
Jie Fan ◽  
Jianqiang Shan

Due to their advantages, such as compactness and high efficiency in heat transfer, helically coiled heat exchangers have been widely used by different type of nuclear power plants, especially by small and medium size reactors (SMRs). In order to analyze the thermal-hydraulic characteristics of a helical coiled once through steam generator (OTSG) for a small integral pressurized water reactor, a computer code is developed in this paper. The code is based on two-fluid model. The constitutive correlations are recommended based on the assessments with the compiled databases from the reviewed literatures. NUSOL SG is validated and verified against heat transfer in helical coiled tubes, and the calculation results agree well with the experiment data. The present study could provide references for the investigators to perform further investigations on the thermal hydraulic characteristics of helical coiled OTSGs.


Author(s):  
M. Subudhi ◽  
E. J. Sullivan

This paper presents the results of an aging assessment of the nuclear power industry’s responses to NRC Generic Letter 97-06 on the degradation of steam generator internals experienced at Electricite de France (EdF) plants in France and at a United States pressurized water reactor (PWR). Westinghouse (W), Combustion Engineering (CE), and Babcock & Wilcox (B & W) steam generator models, currently in service at U.S. nuclear power plants, potentially could experience degradation similar to that found at EdF plants and the U.S. plant. The steam generators in many of the U.S. PWRs have been replaced with steam generators with improved designs and materials. These replacement steam generators have been manufactured in the U.S. and abroad. During this assessment, each of the three owners groups (W, CE, and B&W) identified for its steam generator models all the potential internal components that are vulnerable to degradation while in service. Each owners group developed inspection and monitoring guidance and recommendations for its particular steam generator models. The Nuclear Energy Institute incorporated in NEI 97-06, “Steam Generator Program Guidelines,” a requirement to monitor secondary side steam generator components if their failure could prevent the steam generator from fulfilling its intended safety-related function. Licensees indicated that they implemented or planned to implement, as appropriate for their steam generators, their owners group recommendations to address the long-term effects of the potential degradation mechanisms associated with the steam generator internals.


Author(s):  
M. Yetisir ◽  
G. L. Stevens ◽  
S. Robertson

CANDU® nuclear generating stations and their components were designed for 30 effective full power years (EFPY) of operation. Many CANDU plants are now approaching their design end-of-life and are being considered for extended operation beyond their design life. The Canadian regulator, the Canadian Nuclear Safety Commission (CNSC), has asked utilities to consider component fatigue issues in plant life extension (PLEX) applications. In particular, environmental effects on fatigue is identified as an issue that needs to be addressed, similar to that being addressed for license renewal for U.S. nuclear power plants. To address CNSC concerns, CANDU stations have initiated a program to develop component fatigue management programs for PLEX operation. A pilot study conducted in a typical CANDU plant showed that: • Only 10 to 15% of the numbers of design transients have been used after 25 EFPY of operation. Hence, a significant amount of original design fatigue usage margin remains available for PLEX operation. • Environmental fatigue considerations in heavy water (D2O) were included in the assessment. Only warm-up transients are assessed to have dissolved oxygen concentrations that can result in a significant environmental effect for the ferritic steels used in the CANDU primary and secondary systems. • Due to the low accumulation of transients, and the relative absence of thermal stratification mechanisms, thermal fatigue is not as significant an issue in CANDU plants as in pressurized water reactor (PWR) and boiling water reactor (BWR) plants. This paper summarizes the results of the pilot study conducted for the Canadian CANDU plants.


Author(s):  
Robert A. Leishear

Requiring further investigation, hydrogen explosions and fires have occurred in several operating nuclear reactor power plants. Major accidents that were affected by hydrogen fires and explosions included Chernobyl, Three Mile Island, and Fukushima Daiichi. Smaller piping explosions have occurred at Hamaoka and Brunsbüttel Nuclear Power Plants. This paper is the first paper in a series of publications to discuss this issue. In particular, the different types of reactors that have a history of fires and explosions are discussed here, along with a discussion of hydrogen generation in commercial reactors, which provides the fuel for fires and explosions in nuclear power plants. Overall, this paper is a review of pertinent information on reactor designs that is of particular importance to this multi-part discussion of hydrogen fires and explosions. Without a review of reactor designs and hydrogen generation, the ensuing technical discussions are inadequately backgrounded. Consequently, the basic designs of pressurized water reactors (PWR’s), boiling water reactors (BWR’s), and pressure-tube graphite reactors (RBMK) are discussed in adequate detail. Of particular interest, the Three Mile Island design for a PWR is presented in some detail.


Author(s):  
Christian Phalippou ◽  
Franck Ruffet ◽  
Emmanuel Herms ◽  
François Balestreri

Flow-induced vibrations of steam generator tubes in nuclear power plants may result in wear damage at support locations. The steam generators in EPR power plants have a design life of 60 years; as wear is an identified ageing damage in steam generators, it is therefore important to collect experimental results on wear of tube and support due to dynamic interactions at EPR secondary side temperature. In this study, wear tests were performed between a steam generator tube (Alloy 690) and two flat opposite anti-vibration bars (AVB in 410s stainless steel) at different impact force levels. Tests were performed in pressurized water at 290°C in wear machines for long term repeated predominant impact motions. The worn surfaces were observed by SEM, the wear coefficients of tube and AVB were evaluated using the work rate approach. Significant scoring, due to the importance of sliding when impacts occur, was shown on wear scar patterns. There were greater wear volumes and depths on tubes than on AVBs, but dynamic forced conditions and rigid mounting of AVB in the rigs have prevailed for finally getting an upper bound of the wear rates. Alloy 690 for tubes and 410s for AVB remain a satisfactory material combination considering comparative wear results with other published data.


1976 ◽  
Vol 98 (3) ◽  
pp. 340-347 ◽  
Author(s):  
T. W. Kerlin ◽  
E. M. Katz ◽  
A. T. Chen ◽  
J. G. Thakkar ◽  
S. I. Chang

Dynamics tests were preformed at the Oconee pressurized water reactor to obtain information for checking a theoretical plant model. Low level, periodic reactivity perturbations were introduced and several system responses (reactor power, temperatures, pressures) were monitored. The data were processed off-line to give frequency responses. A linear state-variable model for the plant was formulated and used to compute theoretical frequency responses. A computerized, model-reference identification procedure was used to identify the fuel temperature coefficient of reactivity and the overall fuel-to-coolant heat transfer coefficient. The study showed that dynamic tests can be performed in operating nuclear power plants with insignificant interference to normal operation. Also, the use of automatic parameter identification procedures was demonstrated.


Sign in / Sign up

Export Citation Format

Share Document