Development of Air Cooled Combustor for Mitsubishi G Class Gas Turbine

Author(s):  
Keizo Tsukagoshi ◽  
Shinji Akamatsu ◽  
Kenji Sato ◽  
Katsunori Tanaka ◽  
Hiroaki Kishida ◽  
...  

Mitsubishi Heavy Industries (MHI) pioneered the introduction of steam cooling technology for gas turbines with the introduction of the M501G in 1997. To date, 71 Mitsubishi G units have been sold making this series the largest steam cooled fleet in the market. The turbine inlet temperature (TIT) for this gas turbine is 1500 deg. C. The original M501G has been upgraded for air cooling applications. This upgraded version is called as M501GAC (G Air Cooled). The latest Dry Low NOx (DLN) and cooling technologies from existing F and G series were applied to the upgraded M501GAC. The new GAC combustor was installed in the in-house verification Combined Cycle Power Plant, called T-Point, and verification tests of the combustor were conducted from November 2008. The air cooled M501GAC combustor demonstrated less than 15ppm NOx operation, stable combustor dynamics at all load levels, and high combustor ignition reliability making it suitable for daily start and stop operation at T-Point. Also, oil firing capabilities was tested in May, 2010. Long term verification test is completed in fall 2010.

Author(s):  
Keizo Tsukagoshi ◽  
Hisato Arimura ◽  
Katsunori Tanaka ◽  
Koichi Nishida ◽  
Testu Konishi ◽  
...  

Mitsubishi Heavy Industries (MHI) pioneered the introduction of steam cooling technology for gas turbines with the introduction of the M501G in 1997. To date, 62 Mitsubishi G units have been sold making this series the largest steam cooled fleet in the market. The turbine inlet temperature (TIT) for this gas turbine is 1500 deg. C. The original M501G has been upgraded for air cooling applications. This upgraded version is called as M501GAC (G Air Cooled). Several Dry Low NOx (DLN) and cooling technologies from existing F and G series were applied to the upgraded M501GAC. The new GAC combustor was installed in the in-house verification Combined Cycle Power Plant, called T-Point, and verification tests of the combustor were conducted from November 2008. The air cooled M501GAC combustor demonstrated less than 15ppm NOx operation, stable combustor dynamics at all load levels, and high combustor ignition reliability making it suitable for daily start and stop operation at T-Point. Long term verification test is currently under way.


Author(s):  
Toshishige Ai ◽  
Carlos Koeneke ◽  
Hisato Arimura ◽  
Yoshinori Hyakutake

Mitsubishi Heavy Industries (MHI) G series gas turbine is the industry pioneer in introducing steam cooling technology for gas turbines. The first M501G unit started commercial operation in 1997 and to date, with 62 G units sold, MHI G fleet is the largest steam cooled fleet in the market. The existing commercial fleet includes 35 commercial units with more than 734,000 accumulated actual operating hours, and over 9,400 starts. Upgraded versions have been introduced in the 60 and 50Hz markets (M501G1 and M701G2 respectively). On a different arena, MHI is engaged since 2004 in a Japanese National Project for the development of 1,700°C (3092°F) class gas turbine. Several enhanced technologies developed through this Japanese National Project, including lower thermal conductivity TBC, are being retrofitted to the existing F and G series gas turbines. Retrofitting some of these technologies to the existing M501G1 together with the application of an F class air cooled combustion system will result in an upgraded air-cooled G class engine with increased power output and enhanced efficiency, while maintaining the same 1500°C (2732°F) Turbine Inlet Temperature (TIT). By using an open air cooling scheme, this upgraded machine represents a better match for highly cyclic applications with G class efficiency, while the highly reliable and durable steam cooled counterpart is still offered for more base-loaded applications. After performing various R&D tests, the verification process of the air cooled 60 Hz G gas turbine has moved to component testing in the in-house verification engine. The final verification test prior to commercial operation is scheduled for 2009. This article describes the design features and verification plan of the upgraded M501G gas turbine.


Author(s):  
Katsuyoshi Tada ◽  
Kei Inoue ◽  
Tomo Kawakami ◽  
Keijiro Saitoh ◽  
Satoshi Tanimura

Gas-turbine combined-cycle (GTCC) power generation is clean and efficient, and its demand will increase in the future from economic and social perspectives. Raising turbine inlet temperature is an effective way to increase combined cycle efficiency and contributes to global environmental conservation by reducing CO2 emissions and preventing global warming. However, increasing turbine inlet temperature can lead to the increase of NOx emissions, depletion of the ozone layer and generation of photochemical smog. To deal with this issue, MHPS (MITSUBISHI HITACHI POWER SYSTEMS) and MHI (MITSUBISHI HEAVY INDUSTRIES) have developed Dry Low NOx (DLN) combustion techniques for high temperature gas turbines. In addition, fuel flexibility is one of the most important features for DLN combustors to meet the requirement of the gas turbine market. MHPS and MHI have demonstrated DLN combustor fuel flexibility with natural gas (NG) fuels that have a large Wobbe Index variation, a Hydrogen-NG mixture, and crude oils.


Author(s):  
Christoph Schneider ◽  
Vladimir Navrotsky ◽  
Prith Harasgama

ABB has approximately 200 GT11N and GT11D type gas turbines currently operating in simple cycle and combined cycle power plants. Most of these machines are fairly mature with many approaching the end of their economic life. In order that the power producer may continue to operate a fleet with improved performance, Advanced Air Cooling Technology and Advanced Turbine Aerodynamics have been utilized to uprate these engines with the implementation of a completely new turbine module. The objective of the uprating program was to implement the advanced aero/cooling technology into a complete new turbine module with: • Improved power output for the gas turbine • Increase the GT cycle efficiency • Maintain or improve the gas turbine RAM (Reliability, Availability & Maintainability) • Reduce the Cost of Electricity • Maintain or reduce the emissions of the gas turbine The GT11NM gas turbine has been developed based on the GT11N which has been in operation since 1987 and Midland Cogeneration Venture (MCV-Midland, Michigan) was chosen to demonstrate the uprated GT11NM. The upate/retrofit of the GT11N engine was conducted in May/June 1997 and the resulting gas turbine - GT11NM has met and exceeded the performance goals set at the onset of the development program. The next sections detail the main changes to the turbine and the resulting performance improvements as established with the demonstration at Midland, Michigan.


Author(s):  
V. Kallianpur ◽  
D. Stacy ◽  
Y. Fukuizumi ◽  
H. Arimura ◽  
S. Uchida

Seven G gas turbines from Mitsubishi are in commercial operational at various combined cycle power plants since the first Mitsubishi G gas turbine was inroduced in 1997. The combined operating time on the fleet exceeds over 78,000 actual hours. Additional power plants using Mitsubishi G-series gas turbines are in advanced stages of commissioning in the U.S.A., and are expected to be in commercial operation in 2003. This paper describes operating experience of the Mitsubishi G-series gas turbines, which apply steam-cooling instead of air-cooling to cool the combustor liners. The paper discusses design enhancements that were made to the lead M501G gas turbine at Mitsubishi’s in-house combined cycle power plant facility. It also addresses the effectiveness of those enhancements from the standpoint of hot parts durability and reliability at other power plants that are in commercial operation using Mitsubishi G gas turbines.


Author(s):  
M. Araki ◽  
J. Masada ◽  
S. Hada ◽  
E. Ito ◽  
K. Tsukagoshi

Mitsubishi Heavy Industries, Ltd. (MHI) developed a 1100°C class D-type gas turbine in the 1980s and constructed the world’s first successful large-scale combined cycle power plant. Since then, MHI has developed the F and G-type gas turbines with higher turbine inlet temperature and has delivered these units worldwide accumulating successful commercial operations. MHI is currently participating in a Japanese National Project to promote the development of component technology for the next generation 1700°C class gas turbine. MHI recently developed a 1600°C class J-type gas turbine utilizing some of the technologies developed in the National Project. This paper discusses the history and evolution of MHI large frame gas turbine for power generation and the 1600°C class J-type gas turbine update, including the engine specification, verification and trial operation status.


Author(s):  
Sanjay ◽  
Onkar Singh ◽  
B. N. Prasad

The present work deals with the thermodynamic evaluation of combined cycle with re-heat in gas turbine using the latest gas turbines namely ABB GT26 gas turbine (advanced) in which reheat is used and the blade cooling is done by air bled from compressor. The same turbine is subjected to closed loop steam cooling. Parametric study has been performed on plant efficiency and specific work for various independent parameters such as turbine inlet temperature, compressor pressure ratio, reheating pressure ratio, reheater inlet temperature, blade temperature, etc.. It has been observed that due to higher compressor pressure ratio involved in reheat gas turbine combined cycle and higher temperature of exhaust, the plant efficiency and specific work are higher with the advanced reheat gas/steam combined cycle over the simple combined cycle. Steam cooling offers better performance over aircooling.


1980 ◽  
Author(s):  
R. L. Graves

The difficulties encountered in past and present efforts to operate direct coal-fired gas turbines are substantial. Hence the development effort required to assure a reliable, high-temperature pressurized fluidized bed (PFBC) combined cycle may be very expensive and time consuming. It is, therefore, important that the benefit of achieving high-temperature operation, which is primarily increased efficiency, be clearly understood at the outset of such a development program. This study characterizes the effects of PFBC temperature and pressure on plant efficiency over a wide range of values. There is an approximate three percentage point advantage by operating at a gas turbine inlet temperature of 870 C (1600 F) instead of 538 C (1000 F). Optimum pressure varies with the gas turbine inlet temperature, but ranges from 0.4–1.0 MPa (4–10 atm). An alternate PFBC cycle offering high efficiency at a peak temperature of about 650 C (1200 F) is also discussed.


Author(s):  
Keisuke Makino ◽  
Ken-Ichi Mizuno ◽  
Toru Shimamori

NGK Spark Plug Co., Ltd. has been developing various silicon nitride materials, and the technology for fabricating components for ceramic gas turbines (CGT) using theses materials. We are supplying silicon nitride material components for the project to develop 300 kW class CGT for co-generation in Japan. EC-152 was developed for components that require high strength at high temperature, such as turbine blades and turbine nozzles. In order to adapt the increasing of the turbine inlet temperature (TIT) up to 1,350 °C in accordance with the project goals, we developed two silicon nitride materials with further unproved properties: ST-1 and ST-2. ST-1 has a higher strength than EC-152 and is suitable for first stage turbine blades and power turbine blades. ST-2 has higher oxidation resistance than EC-152 and is suitable for power turbine nozzles. In this paper, we report on the properties of these materials, and present the results of evaluations of these materials when they are actually used for CGT components such as first stage turbine blades and power turbine nozzles.


Author(s):  
Walter W. Shelton ◽  
Robin W. Ames ◽  
Richard A. Dennis ◽  
Charles W. White ◽  
John E. Plunkett ◽  
...  

The U.S. Department of Energy’s (DOE) provides a worldwide leadership role in the development of advanced fossil fuel-based energy conversion technologies, with a focus on electric power generation with carbon capture and storage (CCS). As part of DOE’s Office of Fossil Energy, the National Energy Technology Laboratory (NETL) implements research, development, and demonstration (RD&D) programs that address the challenges of reducing greenhouse gas emissions. To meet these challenges, NETL evaluates advanced power cycles that will maximize system efficiency and performance, while minimizing CO2 emissions and the costs of CCS. NETL’s Hydrogen Turbine Program has sponsored numerous R&D projects in support of Advanced Hydrogen Turbines (AHT). Turbine systems and components targeted for development include combustor technology, materials research, enhanced cooling technology, coatings development, and more. The R&D builds on existing gas turbine technologies and is intended to develop and test the component technologies and subsystems needed to validate the ability to meet the Turbine Program goals. These technologies are key components of AHTs, which enable overall plant efficiency and cost of electricity (COE) improvements relative to an F-frame turbine-based Integrated Gasification Combined Cycle (IGCC) reference plant equipped with carbon capture (today’s state-of-the-art). This work has also provided the basis for estimating future IGCC plant performance based on a Transformational Hydrogen Turbine (THT) with a higher turbine inlet temperature, enhanced material capabilities, reduced air cooling and leakage, and higher pressure ratios than the AHT. IGCC cases from using system-level AHT and THT gas turbine models were developed for comparisons with an F-frame turbine-based IGCC reference case and for an IGCC pathway study. The IGCC pathway is presented in which the reference case (i.e. includes F-frame turbine) is sequentially-modified through the incorporation of advanced technologies. Advanced technologies are considered to be either 2nd Generation or Transformational, if they are anticipated to be ready for demonstration by 2025 and 2030, respectively. The current results included the THT, additional potential transformational technologies related to IGCC plant sections (e.g. air separation, gasification, gas cleanup, carbon capture, NOx reduction) are being considered by NETL and are topics for inclusion in future reports.


Sign in / Sign up

Export Citation Format

Share Document