Thermal Characteristics of Synthetic Jet Fuels in a Meso-Scale Heat Recirculating Combustor

Author(s):  
Teresa A. Wierzbicki ◽  
Ivan C. Lee ◽  
Ashwani K. Gupta

A meso-scale heat recirculating combustor was used to examine the combustion characteristics of two specific synthetic fuels. One of the fuels was made via a Fischer-Tropsch (F-T fuel) process, while the other was produced from tallow (bio-jet fuel). The two fuels were burned in the meso-scale combustor using pure oxygen in a non-premixed injection configuration. The extinction behavior at the fuel-rich and fuel-lean combustion conditions has been investigated for each fuel. The results showed that although the two fuels showed some similarities, the F-T fuel exhibited stable, non-sooting combustion behavior at higher equivalence ratios than the bio-jet fuel. The lean stability limit for the bio-jet fuel was found to be lower (lower equivalence ratio) than that of the F-T fuel. The results were compared with conventional JP-8 jet fuel to provide a comparative analysis of combustion characteristics using the same combustor. A fuel characterization analysis was performed for each fuel, and their respective thermal efficiencies calculated. The F-T and bio-jet fuels both reached a maximum thermal efficiency of about 95% near their respective rich extinction limits.

Author(s):  
Seokyoung Kim ◽  
Paul E. Dodds ◽  
Isabela Butnar

Long-distance air travel requires fuel with a high specific energy and a high energy density. There are no viable alternatives to carbon-based fuels. Synthetic jet fuel from the Fischer-Tropsch (FT) process, employing sustainable feedstocks, is a potential low-carbon alternative. A number of synthetic fuel production routes have been developed, using a range of feedstocks including biomass, waste, hydrogen and captured CO2. We review three energy system models and find that many of these production routes are not represented. We examine the market share of synthetic fuels in each model in a scenario in which the Paris Agreement target is achieved. In 2050, it is cheaper to use conventional jet fuel coupled with a negative emissions technology than to produce sustainable synthetic fuels in the TIAM-UCL and UK TIMES models. However, the JRC-EU-TIMES model, which represents the most production routes, finds a substantial role for synthetic jet fuels, partly because underground CO2 storage is assumed limited. These scenarios demonstrate a strong link between synthetic fuels, carbon capture and storage, and negative emissions. Future model improvements include better representing blending limits for synthetic jet fuels to meet international fuel standards, reducing the costs of synthetic fuels, and ensuring production routes are sustainable.


Author(s):  
P. Gokulakrishnan ◽  
M. S. Klassen ◽  
R. J. Roby

Ignition delay times of a “real” synthetic jet fuel (S8) were measured using an atmospheric pressure flow reactor facility. Experiments were performed between 900 K and 1200 K at equivalence ratios from 0.5 to 1.5. Ignition delay time measurements were also performed with JP8 fuel for comparison. Liquid fuel was prevaporized to gaseous form in a preheated nitrogen environment before mixing with air in the premixing section, located at the entrance to the test section of the flow reactor. The experimental data show shorter ignition delay times for S8 fuel than for JP8 due to the absence of aromatic components in S8 fuel. However, the ignition delay time measurements indicate higher overall activation energy for S8 fuel than for JP8. A detailed surrogate kinetic model for S8 was developed by validating against the ignition delay times obtained in the present work. The chemical composition of S8 used in the experiments consisted of 99.7 vol% paraffins of which approximately 80 vol% was iso-paraffins and 20% n-paraffins. The detailed kinetic mechanism developed in the current work included n-decane and iso-octane as the surrogate components to model ignition characteristics of synthetic jet fuels. The detailed surrogate kinetic model has approximately 700 species and 2000 reactions. This kinetic mechanism represents a five-component surrogate mixture to model generic kerosene-type jets fuels, namely, n-decane (for n-paraffins), iso-octane (for iso-paraffins), n-propylcyclohexane (for naphthenes), n-propylbenzene (for aromatics) and decene (for olefins). The sensitivity of iso-paraffins on jet fuel ignition delay times was investigated using the detailed kinetic model. The amount of iso-paraffins present in the jet fuel has little effect on the ignition delay times in the high temperature oxidation regime. However, the presence of iso-paraffins in synthetic jet fuels can increase the ignition delay times by two orders of magnitude in the negative temperature (NTC) region between 700 K and 900 K, typical gas turbine conditions. This feature can have a favorable impact on preventing flashback caused by the premature autoignition of liquid fuels in lean premixed prevaporized (LPP) combustion systems.


2014 ◽  
Vol 118 ◽  
pp. 41-47 ◽  
Author(s):  
Teresa A. Wierzbicki ◽  
Ivan C. Lee ◽  
Ashwani K. Gupta
Keyword(s):  

Author(s):  
Philippe Dagaut ◽  
Pascal Diévart

Research on the production and combustion of synthetic jet fuels has recently gained importance because of their potential for addressing security of supply and sustainable air transportation challenges. The combustion of a 100% naphtenic cut that fits with typical chemical composition of products coming from biomass or coal liquefaction (C12.64H23.64; M=175.32 g.mol−1; H/C=1.87; DCN=39; density=863.1 g.L−1) and a 50% vol. mixture with Gas to Liquid from Shell (mixture: C11.54H23.35; M=161.83 g.mol−1; H/C=2.02; DCN=46; density=800.3 g.L−1) were studied in a jetstirred reactor under the same conditions (temperature, 550–1150 K; pressure, 10 bar; equivalence ratio, 0.5, 1, and 2; initial fuel concentration, 1000 ppm). Surrogate model-fuels were designed based on fuel composition and properties for simulating the kinetics of oxidation of these fuels. We used new model-fuels consisting of mixtures of n-decane, decalin, tetralin, 2-methylheptane, 3-methylheptane, n-propyl cyclohexane, and n-propylbenzene. The detailed chemical kinetic reaction mechanism proposed was validated using the entire experimental database obtained in the present work and for the oxidation of pure GtL, we used previous results. Kinetic computations involving reaction paths analyses and sensitivity analyses were used to interpret the results.


Author(s):  
Shazib Z. Vijlee ◽  
John C. Kramlich ◽  
Ann M. Mescher ◽  
Scott D. Stouffer ◽  
Alanna R. O’Neil-Abels

The use of alternative/synthetic fuels in jet engines requires improved understanding and prediction of the performance envelopes and emissions characteristics relative to the behavior of conventional fuels. In this study, experiments in a toroidal well-stirred reactor (TWSR) are used to study lean premixed combustion temperature and extinction behavior for several fuels including simple alkanes, synthetic jet fuels, and conventional JP8. A perfectly stirred reactor (PSR) model is used to interpret the observed behavior. The first portion of the study deals with jet fuels and synthetic jet fuels with varying concentrations of added aromatic compounds. Synthetic fuels contain little or no natural aromatic species, so aromatic compounds are added to the fuel because fuel system seals require these species to function properly. The liquid fuels are prevaporized and premixed before being burned in the TWSR. Air flow is held constant to keep the reactor loading roughly constant. Temperature is monitored inside the reactor as the fuel flow rate is slowly lowered until extinction occurs. The extinction point is defined by both its equivalence ratio and temperature. The measured blowout point is very similar for all four synthetic fuels and the baseline JP8 at aromatic concentrations of up to 20% by volume. Since blowout is essentially the same for all the base fuels at low aromatic concentrations, a single fuel was used to test the effect of aromatic concentrations from 0 to 100%. PSR models of these complex fuels show the expected result that behavior diverges from an ideal, perfectly premixed model as the combustion approaches extinction. The second portion of this study deals with lean premixed combustion of simple gaseous alkanes (methane, ethane, and propane) in the same TWSR. These simpler fuels were tested for extinction in a similar manner to the complex fuels, and behavior was characterized similarly. Once again, PSR models show that the TWSR behaves similar to a PSR during stable combustion far from blowout, but as it approaches blowout and becomes less stable a single PSR no longer accurately describes the TWSR. This work is a step towards developing chemical reactor networks (CRNs) based on computational fluid dynamics (CFD) of the simple gaseous fuels in the TWSR. Ultimately, CRNs are the only realistic way to accurately perform detailed chemical modeling of the combustion of complex liquid fuels.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Charles L. Keesee ◽  
Bing Guo ◽  
Eric L. Petersen

Abstract New laminar flame speed experiments have been collected for two alternative liquid fuels. Understanding the combustion characteristics of these synthetic fuels is an important step in developing new chemical kinetics mechanisms that can be applied to real fuels. Included in this study are two synthetic Jet fuels: Syntroleum S-8 and Shell GTL. The precise composition of these fuels is known to change from sample to sample. Since these are low-vapor pressure fuels, there are additional uncertainties in their introduction into gas-phase mixtures, leading to uncertainty in the mixture equivalence ratio. An in-situ laser absorption technique was implemented to verify the procedure for filling the vessel and to minimize and quantify the uncertainty in the experimental equivalence ratio. The diagnostic utilized a 3.39-μm HeNe laser in conjunction with Beer's law. The resulting spherically expanding, laminar flame experiments were conducted over a range of equivalence ratios from φ = 0.7 to φ = 1.5 at initial conditions of 1 atm and 403 K in the high-temperature, high-pressure (HTHP) constant-volume vessel at Texas A&M University. The experimental results show that both fuels have similar flame speeds with a peak value just under 60 cm/s. However, it is shown that when comparing the results from different datasets for these real fuels, equivalence ratio may not be the best parameter to use. Fuel mole fraction may be a better parameter to use as it is independent of the average fuel molecule or fuel surrogate used to calculate equivalence ratio in these real fuel/air mixtures.


2002 ◽  
Vol 125 (1) ◽  
pp. 34-39 ◽  
Author(s):  
N. Widmor ◽  
J. S. Ervin ◽  
S. Zabarnick ◽  
M. Vangness

Aircraft which fly at high altitude or encounter extremely cold environments have the potential for fuel freezing and, consequently, catastrophic failure of the fuel system. Thus, it is important to study the freezing of hydrocarbon jet fuels. In the current work, a differential scanning calorimeter is used to study thermal characteristics and phase transitions of freezing jet fuel. In addition, a cold-stage microscope is used to record images of the resulting crystalline microstructure. A kinetic representation for the freezing of jet fuel is presented. Kinetic mechanisms that describe the liquid-to-solid phase transformation in fuels are necessary for the development of computational fluid dynamics models that can be used by aircraft designers.


Author(s):  
Trupti Kathrotia ◽  
Sandra Richter ◽  
Clemens Naumann ◽  
Nadezhda Slavinskaya ◽  
Torsten Methling ◽  
...  

In the last years, the development of synthetic aviation jet fuels has attracted much interest, to provide alternatives to crude-oil based kerosene. Synthetic jet fuels can be produced from a variety of feedstocks and processes. To limit possible harmful effects on the environment when burning a jet fuel, discussions are attributed to the effects of the specific composition of a synthetic fuel on its performance and its emission pattern. A numerical tool, if available, would also be helpful within the specification process any aviation jet fuel must pass. The present work contributes to the studies and efforts how to design a synthetic jet fuel to match predefined properties, e.g. the energy content or a less harmful emission characteristics compared to Jet A-1. The approach of a generic fuel will be followed in order to design a synthetic jet fuel with pre-defined chemical properties: A chemical kinetic reaction mechanism will be elaborated capable predicting the fundamental combustion properties of the generic fuel for each possible mixing ratio of the components included. In this work, a generic mixture serving as an innovative synthetic jet fuel was studied, with n-dodecane, cyclohexane, and iso-octane chosen as single fuel components; no aromatics were added to reduce the concentration of soot precursors. Then, their fundamental combustion properties, i.e. laminar burning velocity and ignition delay time, were measured in a burner test rig and applying the shock tube technique, respectively. These experimental data were used for the validation of the reaction mechanisms developed for each single fuel component, which were then combined to the reaction mechanism for the generic fuel under consideration. To allow a comparison of the combustion behavior of the synthetic jet fuel directly, with the same reaction mechanism, to Jet A-1, toluene was added as a model component for aromatics. A reduced surrogate reaction model was produced, too. All the reaction mechanisms elaborated are shown to reasonably predict the fundamental combustion properties within the parameter range considered. The compact reduced surrogate model can serve as a virtual jet fuel within numerical simulations. Thus, ultimately, an estimation of the suitability of an innovative synthetic jet fuel as a blending component to crude-oil kerosene is enabled. As a result, CFD simulations can be run efficiently tackling the combustion of a synthetic fuel in a jet engine under practical conditions and by taking into account the interaction between turbulence and chemistry.


Author(s):  
Yang Lin ◽  
Yuzhen Lin ◽  
Chi Zhang ◽  
Quanhong Xu ◽  
Chih-Jen Sung ◽  
...  

For application to aircraft turbines, the present work experimentally examines the physical and combustion-related properties of an F-T synthetic jet fuel relative to the Chinese standard jet fuel, RP-3. This fuel, derived from coal feedstock, is characterized in terms of its physical properties such as density, flash point, freezing point, surface tension, viscosity, and heating value in accordance with Chinese National Standard Testing Methods. Subsequently, several important characteristics relevant to its use in aircraft turbine engines are investigated using a single cup model combustor rig, including atomization, ignition, blowout, and exhaust emissions experiments are carried out. Preliminary results suggest that the use of coal-derived synthetic jet fuel will not result in adverse effects on the performance of an aircraft turbine combustor relative to conventional aviation kerosene. These initial results support the conclusion that full-scale engine testing is warranted to further investigate the performance of F-T synthetic jet fuels in practical systems, and to determine its ability to act as a “drop-in” replacement for traditional aviation fuel.


Sign in / Sign up

Export Citation Format

Share Document