Performance Investigation of a Small Horizontal Axis Wind Turbine Equipped With Flexible Blades

Author(s):  
David W. MacPhee ◽  
Asfaw Beyene

Wind turbine technology has improved dramatically over the past decade, to the extent where wind turbine diameters are expected to soon exceed 160m and top 10MW in rated power output. While the development of these larger turbines has become immensely sophisticated, relatively little effort is being put forth to improve performance of smaller wind turbines, typically used in applications otherwise unsuitable for large installations. In this paper we investigate both computationally and experimentally the feasibility of a morphing turbine rotor, wherein blades are constructed of a flexible material and permitted to bend passively in response to external loading. The results indicate that the flexible blades can act as a passive pitch control device, resulting in significant improvements in efficiency when compared to a traditional rigid-blade design.

2018 ◽  
Vol 45 (1) ◽  
pp. 53-65 ◽  
Author(s):  
Jelena Svorcan ◽  
Ognjen Pekovic ◽  
Toni Ivanov

Although much employed, wind energy systems still present an open, contemporary topic of many research studies. Special attention is given to precise aerodynamic modeling performed in the beginning since overall wind turbine performances directly depend on blade aerodynamic performances. Several models different in complexity and computational requirements are still widely used. Most common numerical approaches include: i) momentum balance models, ii) potential flow methods and iii) full computational fluid dynamics solutions. Short explanations, reviews and comparison of the existing computational concepts are presented in the paper. Simpler models are described and implemented while numerous numerical investigations of isolated horizontal-axis wind turbine rotor consisting of three blades have also been performed in ANSYS FLUENT 16.2. Flow field is modeled by Reynolds Averaged Navier-Stokes (RANS) equations closed by two different turbulence models. Results including global parameters such as thrust and power coefficients as well as local distributions along the blade obtained by different models are compared to available experimental data. Presented results include fluid flow visualizations in the form of velocity contours, sectional pressure distributions and values of power and thrust force coefficients for a range of operational regimes. Although obtained numerical results vary in accuracy, all presented numerical settings seem to slightly under- or over-estimate the global wind turbine parameters (power and thrust force coefficients). Turbulence can greatly affect the wind turbine aerodynamics and should be modeled with care.


Author(s):  
Earl P. N. Duque ◽  
Michael D. Burklund ◽  
Wayne Johnson

A vortex lattice code, CAMRAD II, and a Reynolds-Averaged Navier-Stoke code, OVERFLOW-D2, were used to predict the aerodynamic performance of a two-bladed horizontal axis wind turbine. All computations were compared with experimental data that was collected at the NASA Ames Research Center 80-by 120-Foot Wind Tunnel. Computations were performed for both axial as well as yawed operating conditions. Various stall delay models and dynamics stall models were used by the CAMRAD II code. Comparisons between the experimental data and computed aerodynamic loads show that the OVERFLOW-D2 code can accurately predict the power and spanwise loading of a wind turbine rotor.


Author(s):  
Scott Dana ◽  
Joseph Yutzy ◽  
Douglas E. Adams

One of the primary challenges in diagnostic health monitoring and control of wind turbines is compensating for the variable nature of wind loads. Given the sometimes large variations in wind speed, direction, and other operational variables (like wind shear), this paper proposes a data-driven, online rotor model identification approach. A 2 m diameter horizontal axis wind turbine rotor is first tested using experimental modal analysis techniques. Through the use of the Complex Mode Indication Function, the dominant natural frequencies and mode shapes of dynamic response of the rotor are estimated (including repeated and pseudo-repeated roots). The free dynamic response properties of the stationary rotor are compared to the forced response of the operational rotor while it is being subjected to wind and rotordynamic loads. It is demonstrated that both narrowband (rotordynamic) and broadband (wind driven) responses are amplified near resonant frequencies of the rotor. Blade loads in the flap direction of the rotor are also estimated through matrix inversion for a simulated set of rotor blade input forces and for the operational loading state of the wind turbine in a steady state condition. The analytical estimates are shown to be accurate at frequencies for which the ordinary coherence functions are near unity. The loads in operation are shown to be largest at points mid-way along the span of the blade and on one of the three blades suggesting this method could be used for usage monitoring. Based on these results, it is proposed that a measurement of upstream wind velocity will provide enhanced models for diagnostics and control by providing a leading indicator of disturbances in the loads.


2006 ◽  
Vol 128 (4) ◽  
pp. 432-444 ◽  
Author(s):  
Chanin Tongchitpakdee ◽  
Sarun Benjanirat ◽  
Lakshmi N. Sankar

The aerodynamic performance of a wind turbine rotor equipped with circulation enhancement technology (trailing-edge blowing or Gurney flaps) is investigated using a three-dimensional unsteady viscous flow analysis. The National Renewable Energy Laboratory Phase VI horizontal axis wind turbine is chosen as the baseline configuration. Experimental data for the baseline case is used to validate the flow solver, prior to its use in exploring these concepts. Calculations have been performed for axial and yawed flow at several wind conditions. Results presented include radial distribution of the normal and tangential forces, shaft torque, root flap moment, and surface pressure distributions at selected radial locations. At low wind speed (7m∕s) where the flow is fully attached, it is shown that a Coanda jet at the trailing edge of the rotor blade is effective at increasing circulation resulting in an increase of lift and the chordwise thrust force. This leads to an increased amount of net power generation compared to the baseline configuration for moderate blowing coefficients (Cμ⩽0.075). A passive Gurney flap was found to increase the bound circulation and produce increased power in a manner similar to Coanda jet. At high wind speed (15m∕s) where the flow is separated, both the Coanda jet and Gurney flap become ineffective. The effects of these two concepts on the root bending moments have also been studied.


Sign in / Sign up

Export Citation Format

Share Document