Intensive Quenching Theory and Application for Imparting High Residual Surface Compressive Stresses in Pressure Vessel Components

Author(s):  
Michael A. Aronov ◽  
Nikolai I. Kobasko ◽  
Joseph A. Powell ◽  
Andrew M. Freborg ◽  
B. Lynn Ferguson

An alternative method for the hardening of steel parts has been developed as a means of providing steel products with superior mechanical properties through development of high residual compressive stresses on the part surface, and involves the application of intensive quenching during heat treatment. This processing method, commercially patented under the name IntensiQuench SM, imparts high residual compressive stresses on the steel surface, thus allowing for the use of lower alloy steels, reduction or elimination of the need for carburization and shot peening, and providing for more cost-effective heat treating. Intensive quenching also provides additional environmental benefits, as the process uses plain water as the quenching media in contrast to traditional heat treatment practices which typically employ hazardous and environmentally unfriendly quenching oil. This paper presents an overview of the theory and application of intensive quenching, as well as provides experimental and computational data obtained for a variety of steel products. Also presented will be results of computer simulations of temperature, structural and stress/strain conditions for a typical pressure vessel during intensive quenching.

2003 ◽  
Vol 125 (2) ◽  
pp. 188-194 ◽  
Author(s):  
Andrew M. Freborg ◽  
B. Lynn Ferguson ◽  
Michael A. Aronov ◽  
Nikolai I. Kobasko ◽  
Joseph A. Powell

An alternative method for the hardening of steel parts has been developed as a means of providing steel products with superior mechanical properties through development of high residual compressive stresses on the part surface, and involves the application of intensive quenching during heat treatment. This processing method, termed “Intensive Quenching,” imparts high residual compressive stresses on the steel surface, thus allowing for the use of lower alloy steels, reduction or elimination of the need for carburization and shot peening, and providing for more cost-effective heat treating. Intensive quenching also provides additional environmental benefits, as the process uses plain water as the quenching media in contrast to traditional heat treatment practices which typically employ hazardous and environmentally unfriendly quenching oil. This paper presents an overview of the theory and application of intensive quenching, as well as provides experimental and computational data obtained for a variety of steel products. Also presented will be results of computer simulations of temperature, structural and stress/strain conditions for a typical pressure vessel during intensive quenching.


Alloy Digest ◽  
2021 ◽  
Vol 70 (6) ◽  

Abstract AK Steel 409 Ni is a 11% chromium ferritic stainless steel microalloyed with titanium and nickel. It provides excellent weldability, toughness, and fabricating characteristics superior to those of type 409 stainless steel in thicknesses over 3.05 mm (0.120 in.). This alloy is a cost effective alternative to mild steels and low-alloy steels that also provides superior corrosion and/or oxidation resistance. The recommended maximum service temperature of AK Steel 409 Ni is 730 °C (1350 °F). This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on corrosion resistance as well as heat treating and joining. Filing Code: SS-1336. Producer or source: AK Steel Corporation.


Author(s):  
Shyam Gopalakrishnan ◽  
Ameya Mathkar

Abstract Most of the heavy thickness boiler and pressure vessel components require heat treatment — in the form of post weld heat treatment (PWHT) and sometimes coupled with local PWHT. It is also a common practice to apply post heating/ intermediate stress relieving/ dehydrogenation heat treatment in case of alloy steels. The heat treatment applied during the various manufacturing stages of boiler and pressure vessel have varying effects on the type of material that is used in fabrication. It is essential to understand the effect of time and temperature on the properties (like tensile and yield strength/ impact/ hardness, etc.) of the materials that are used for fabrication. Considering the temperature gradients involved during the welding operation a thorough understanding of the time-temperature effect is essential. Heat treatments are generally done at varying time and temperatures depending on the governing thickness and the type of materials. The structural effects on the materials or the properties of the materials tends to vary based on the heat treatment. All boiler and pressure vessel Code require that the properties of the material should be intact and meet the minimum Code specification requirements after all the heat treatment operations are completed. ASME Code(s) like Sec I, Section VIII Division 1 and Division 2 and API recommended practices like API 934 calls for simulation heat treatment of test specimen of the material used in fabrication to ascertain whether the intended material used in construction meets the required properties after all heat treatment operations are completed. The work reported in this paper — “Heat treatment of fabricated components and the effect on properties of materials” is an attempt to review the heat treatment and the effect on the properties of materials that are commonly used in construction of boiler and pressure vessel. For this study, simulation heat treatment for PWHT of test specimen for CS/ LAS plate and forging material was carried out as specified in ASME Section VIII Div 1, Div 2 and API 934-C. The results of heat treatment on material properties are plotted and compared. In conclusion recommendations are made which purchaser/ manufacturer may consider for simulation heat treatment of test specimen.


Author(s):  
Kang Xu ◽  
Mahendra D. Rana ◽  
James White

Abstract In pressure vessel fabrication, cold formed carbon and alloy steels are required to have a subsequent heat treatment because of the loss of ductility and toughness from cold forming. The requirements for heat treatment are dependent on the materials, thickness, amount of cold forming and service condition. There are significant differences among the pressure vessel codes on the requirements for cold forming heat treatment. In this paper, the code requirements for cold forming heat treatment are reviewed for ASME Section VIII Divisions 1 and 2, EN 13445-4 and GB-150. The technical basis of forming strain calculations is discussed. Based on experimental data on the impact toughness as a function of forming strain, and fracture mechanics studies on cold formed components, improved guidelines are proposed on cold forming limits for heat treatment.


Alloy Digest ◽  
2020 ◽  
Vol 69 (11) ◽  

Abstract Lucefin Group C50, C50E, and C50R are medium-carbon, non-alloy steels that are used in the normalized, cold worked, or quenched and tempered condition. C50E and C50R may also be flame or induction hardened. C50, C50E, and C50R are widely used for moderately stressed parts, where higher strength levels are needed than can be achieved in the lower carbon grades, and where the expense of an alloy steel is not justified. Owing to their low hardenability, their use in the quenched and tempered condition is not recommended for large sizes, as the improvement in mechanical properties over the normalized condition is insufficient to justify the additional cost of heat treatment. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on heat treating, machining, and joining. Filing Code: CS-207. Producer or source: Lucefin S.p.A.


2000 ◽  
pp. 1-3

Abstract Modern gears are made from a wide variety of materials. Of all these, steel has the outstanding characteristics of high strength per unit volume and low cost per pound. Although both plain carbon and alloy steels with equal hardness exhibit equal tensile strengths, alloy steels are preferred because of higher hardenability and the desired microstructures of the hardened case and core needed for the high fatigue strength of gears. This chapter provides an overview of the key considerations involved in the selection and application of heat treating processes for alloy steel gears and serves as an introduction to the subsequent chapters in this book.


Alloy Digest ◽  
1993 ◽  
Vol 42 (10) ◽  

Abstract ALTEMP HX is an austenitic nickel-base alloy designed for outstanding oxidation and strength at high temperatures. The alloy is solid-solution strengthened. Applications include uses in the aerospace, heat treatment and petrochemical markets. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness and creep. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, and joining. Filing Code: Ni-442. Producer or source: Allegheny Ludlum Corporation.


Alloy Digest ◽  
2000 ◽  
Vol 49 (10) ◽  

Abstract CMW 100 is a copper alloy that combines high tensile strength with high electrical and thermal conductivity. It responds to age-hardening heat treatment. It is used for flash welding dies, springs, electrical components, high-strength backing material for brazed assemblies, and wire guides. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as fatigue. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: CU-29. Producer or source: CMW Inc. Originally published as Mallory 100, August 1955, revised October 2000.


Alloy Digest ◽  
1953 ◽  
Vol 2 (10) ◽  

Abstract CONDULOY is a low beryllium-copper alloy containing about 1.5% nickel. It responds to age-hardening heat treatment for improved mechanical properties. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on casting, heat treating, machining, and joining. Filing Code: Cu-11. Producer or source: Brush Beryllium Company.


Sign in / Sign up

Export Citation Format

Share Document