Seismic Proving Test of Ultimate Piping Strength: Test Results on Piping Component and Simplified Piping System

Author(s):  
Kenichi Suzuki ◽  
Y. Namita ◽  
H. Abe ◽  
I. Ichihashi ◽  
Kohei Suzuki ◽  
...  

In 1998FY, the 6 year program of piping tests was initiated with the following objectives: i) to clarify the elasto-plastic response and ultimate strength of nuclear piping, ii) to ascertain the seismic safety margin of the current seismic design code for piping, and iii) to assess new allowable stress rules. In order to resolve extensive technical issues before proceeding on to the seismic proving test of a large-scale piping system, a series of preliminary tests of materials, piping components and simplified piping systems is intended. In this paper, the current status of the piping component tests and the simplified piping system tests is reported with focus on fatigue damage evaluation under large seismic loading.


Author(s):  
Kenichi Suzuki ◽  
Y. Namita ◽  
H. Abe ◽  
I. Ichihashi ◽  
Kohei Suzuki ◽  
...  

In 1998FY, the 6 year program of piping tests was initiated with the following objectives: i) to clarify the elasto-plastic response and ultimate strength of nuclear piping, ii) to ascertain the seismic safety margin of the current seismic design code for piping, and iii) to assess new allowable stress rules. In order to resolve extensive technical issues before proceeding on to the seismic proving test of a large-scale piping system, a series of preliminary tests of materials, piping components and simplified piping systems is intended. In this paper, the current status of the piping component tests and the simplified piping system tests is reported with focus on fatigue damage evaluation under large seismic loading.



Author(s):  
Kenichi Suzuki ◽  
Y. Namita ◽  
H. Abe ◽  
I. Ichihashi ◽  
Kohei Suzuki ◽  
...  

The six-year program for the Seismic Proving Test of Ultimate Piping Strength has been running since 1998 with the following objectives: i) to clarify the elasto-plastic response and ultimate strength of nuclear piping, ii) to ascertain the seismic safety margin of the current seismic design code for piping, and iii) to assess new allowable stress rules. To resolve outstanding technical issues before proceeding on to a seismic proving test of a large-scale piping system, a series of preliminary tests of materials, piping components and simplified piping systems is intended. A simulation analysis related to the simplified piping system test is described with a focus on the methodology of the non-linear dynamic response analysis of the whole piping system and the strain behavior of the localized critical elements, such as elbows and nozzles.



1989 ◽  
Vol 111 (3) ◽  
pp. 291-299 ◽  
Author(s):  
T. Chiba ◽  
R. Koyanagi ◽  
N. Ogawa ◽  
C. Minowa

One of the current topics in the seismic design of piping systems is the overall reliability of them in earthquake events. Actual piping systems are generally supported by independent structures such as vessels and steel structures. So, it is very important to clarify the behavior of actual piping systems during the seismic events. For this purpose, the analytical method of multiple excitation problems is a preferable approach to not only evaluate the actual behavior of the piping systems, but also improve the reliability of piping systems. To clarify the dynamic characteristics of the piping systems and to assess the computational methods in the linear system subjected to multiple support excitations, an experimental study using a realistic large-scale piping model has been conducted. The equations for the multiple excitation problem have been validated and the adequacy of the multiple response spectra method has been confirmed by the comparison of the test results with the analytical one. This paper reports the results focusing on the analytical methods of the multiple support piping system. It is noted that the multiple response spectrum method is efficient for the multiple excitation problems.



1966 ◽  
Vol 88 (2) ◽  
pp. 164-168 ◽  
Author(s):  
S. S. Grover

This paper deals with pulsations in pressure and flow in the reciprocating compressor and connected piping system. A model is presented that describes the excitation at the compressor and the propagation of the pulsations in the interconnected piping. It has been adapted to digital computations to predict the pulse magnitudes in reciprocating compressor piping systems and to assess measures for their control. Predicted results have been compared with field test data and with simplified limiting condition results. A discussion of its practical application is included.



Author(s):  
Akira Mikami ◽  
Makoto Udagawa ◽  
Hajime Takada

The authors have proposed an analytical model by which they can simulate the experimental results of a piping system with full circumferential 48% thinning at an elbow or two elbows. A series of elasto-plastic analyses has been carried out in order to investigate the experimental behavior of the piping system. Dynamic analyses describe the ratcheting behavior and the average amplitude of the opening-closing displacement at elbows relatively well. And then static analyses describe ratcheting and ovaling of the cross section of pipes fairy well.



2020 ◽  
Vol 20 (03) ◽  
pp. 2030001 ◽  
Author(s):  
Jie Tan ◽  
Peng Zhang ◽  
Qian Feng ◽  
Gangbing Song

Piping systems are typical nonstructural components of a building. Previous investigations have reported many cases that earthquake causes damages or failures of piping system, resulting in secondary disasters. Therefore, this paper conducts a survey of the seismic damage of the piping systems of buildings and then reviews the state-of-the-art of the passive seismic protection methods. This paper proposes to classify the building piping system into rigid connected pipes, flexible connected pipes and semi-rigid connected pipes. Typical seismic damages of building pipes are presented following this classification. Then, several current seismic protection methods (including constructional measures, seismic braces, damping techniques and base isolation methods) are discussed regarding the theoretical mechanism and feasibility. Furthermore, the state-of-the-art of the building piping system and the passive protection methods with application prospects are evaluated. Based on the review, the flexible piping systems are most commonly used in existing old buildings and are more vulnerable in earthquakes due to their high flexibility. New buildings prefer the rigid connections which tend to restrain the motion of the pipe. However, the excessive stiffness of the rigid connection may cause overlarge internal stresses in both the connection and the pipe. Semi-rigid piping systems have sufficient overall stiffness and a degree of local deform ability and thus have the best seismic performance. In future studies, more research should be devoted to propose and develop new dampers suitable for piping systems, which will improve the seismic safety of building piping systems.



Author(s):  
Y. Namita ◽  
K. Suzuki ◽  
H. Abe ◽  
I. Ichihashi ◽  
M. Shiratori ◽  
...  

In FY 2000, a 3-year testing program of eroded piping was initiated with the following objectives: 1) to ascertain the seismic safety margins for eroded piping designed under the current seismic design code, 2) to clarify the elasto-plastic response and ultimate strength of eroded nuclear piping. A series of tests on eroded piping components and eroded piping systems was planned. In this paper, the results of those tests are presented and analyzed, focusing on the influence of the form and the number of thinned-wall portions on the fatigue life of the piping.



Author(s):  
Jinsuo Nie ◽  
Giuliano DeGrassi ◽  
Charles H. Hofmayer ◽  
Syed A. Ali

The Japan Nuclear Energy Safety Organization/Nuclear Power Engineering Corporation (JNES/NUPEC) large-scale piping test program has provided valuable new test data on high level seismic elasto-plastic behavior and failure modes for typical nuclear power plant piping systems. The component and piping system tests demonstrated the strain ratcheting behavior that is expected to occur when a pressurized pipe is subjected to cyclic seismic loading. Under a collaboration agreement between the U.S. and Japan on seismic issues, the U.S. Nuclear Regulatory Commission (NRC)/ Brookhaven National Laboratory (BNL) performed a correlation analysis of the large-scale piping system tests using detailed state-of-the-art nonlinear finite element models. Techniques are introduced to develop material models that can closely match the test data. The shaking table motions are examined. The analytical results are assessed in terms of the overall system responses and the strain ratcheting behavior at an elbow. The paper concludes with the insights about the accuracy of the analytical methods for use in performance assessments of highly nonlinear piping systems under large seismic motions.



Author(s):  
Y. Namita ◽  
K. Suzuki ◽  
H. Abe ◽  
I. Ichihashi ◽  
M. Shiratori ◽  
...  

In 2000FY, a 3 year program of eroded piping tests was initiated with the following objectives: 1) to ascertain the seismic safety margins for eroded piping designed under the current seismic design code, 2) to clarify the elasto-plastic response and ultimate strength of eroded nuclear piping. It was intended to carry out a series of tests on eroded piping components and eroded piping systems. This paper is a report on the program of eroded piping tests.



1986 ◽  
Vol 108 (3) ◽  
pp. 330-333
Author(s):  
G. A. Schott ◽  
G. M. Hulbert ◽  
C. F. Heberling

This paper presents results and observations from dynamic tests and analyses performed on an 8-in. (0.20-m) diameter, thin-walled piping system. The piping system is a scaled representation of a Liquid Metal Fast Breeder Reactor (LMFBR) large diameter piping loop. Prototypic piping restraints were employed, including mechanical snubbers, rigid struts, pipe hangers and nonintegral pipe clamps. Snap-back, sine-sweep and seismic tests were performed for various restraint configurations and piping conditions. The test results are compared to analytical predictions for verification of the methods and models used in the seismic design of LMFBR piping systems. Test program conclusions and general recommendations for piping seismic analyses are presented along with a discussion of test and analysis results.



Sign in / Sign up

Export Citation Format

Share Document