A Newton-Krylov Based Solver for Modeling Finite Rate Chemistry

Author(s):  
David H. Wang ◽  
Michael J. Bockelie ◽  
Marc A. Cremer ◽  
J.-Y. Chen

To date, computational fluid dynamics (CFD) codes aimed at solving practical engineering problems involving chemically reacting flow have incorporated relatively simple descriptions of the chemical mechanisms involved. Techniques are now available to create reduced mechanisms that faithfully represent detailed chemical descriptions over an appropriate range of conditions using many fewer species. However, including reduced mechanisms into a CFD analysis typically leads to numerical difficulties. In a recent project, a new modeling tool was created that utilizes a combination of state-of-the-art techniques used by Reaction Engineering International (REI) for modeling finite rate chemistry in chemically reacting flows using reduced mechanisms with emerging Newton-Krylov methods for solving systems of non-linear equations. For tests problems ranging from geometrically simple combustion problems to full-scale utility boiler simulations, the Newton-Krylov solver has reduced the CPU time to achieve a solution by up to 60% compared to our traditional Picard iteration method. This paper discusses the implementation of the Newton-Krylov solver into the REI combustion code, the impact of parameters on the performance of the Newton-Krylov solver for solving problems using reduced mechanisms, and demonstration of the Newton-Krylov solver on full-scale utility boiler NOx simulations.

2017 ◽  
Vol 27 (12) ◽  
pp. 2768-2774
Author(s):  
Rainald Löhner ◽  
Fumiya Togashi ◽  
Joseph David Baum

Purpose A common observation made when computing chemically reacting flows is how central processing unit (CPU)-intensive these are in comparison to cold flow cases. The update of tens or hundreds of species with hundreds or thousands of reactions can easily consume more than 95% of the total CPU time. In many cases, the region where reactions (combustion) are actually taking place comprises only a very small percentage of the volume. Typical examples are flame fronts propagating through a domain. In such cases, only a small fraction of points/cells needs a full chemistry update. This leads to extreme load imbalances on parallel machines. The purpose of the present work is to develop a methodology to balance the work in an optimal way. Design/methodology/approach Points that require a full chemistry update are identified, gathered and distributed across the network, so that work is evenly distributed. Once the chemistry has been updated, the unknowns are gathered back. Findings The procedure has been found to work extremely well, leading to optimal load balance with insignificant communication overheads. Research limitations/implications In many production runs, the procedure leads to a reduction in CPU requirements of more than an order of magnitude. This allows much larger and longer runs, improving accuracy and statistics. Practical implications The procedure has allowed the calculation of chemically reacting flow cases that were hitherto not possible. Originality/value To the authors’ knowledge, this type of load balancing has not been published before.


Author(s):  
Jaroslav Tir ◽  
Johannes Karreth

Civil wars are one of the most pressing problems facing the world. Common approaches such as mediation, intervention, and peacekeeping have produced some results in managing ongoing civil wars, but they fall short in preventing civil wars in the first place. This book argues for considering civil wars from a developmental perspective to identify steps to assure that nascent, low-level armed conflicts do not escalate to full-scale civil wars. We show that highly structured intergovernmental organizations (IGOs, e.g. the World Bank or IMF) are particularly well positioned to engage in civil war prevention. Such organizations have both an enduring self-interest in member-state peace and stability and potent (economic) tools to incentivize peaceful conflict resolution. The book advances the hypothesis that countries that belong to a larger number of highly structured IGOs face a significantly lower risk that emerging low-level armed conflicts on their territories will escalate to full-scale civil wars. Systematic analyses of over 260 low-level armed conflicts that have occurred around the globe since World War II provide consistent and robust support for this hypothesis. The impact of a greater number of memberships in highly structured IGOs is substantial, cutting the risk of escalation by over one-half. Case evidence from Indonesia’s East Timor conflict, Ivory Coast’s post-2010 election crisis, and from the early stages of the conflict in Syria in 2011 provide additional evidence that memberships in highly structured IGOs are indeed key to understanding why some low-level armed conflicts escalate to civil wars and others do not.


10.2514/3.261 ◽  
1991 ◽  
Vol 5 (3) ◽  
pp. 274-283 ◽  
Author(s):  
Philip E. Buelow ◽  
John C. Tannehill ◽  
John O. levalts ◽  
Scott L. Lawrence

2020 ◽  
Author(s):  
Γεώργιος Πατεράκης

The current work describes an experimental investigation of isothermal and turbulent reacting flow field characteristics downstream of axisymmetric bluff body stabilizers under a variety of inlet mixture conditions. Fully premixed and stratified flames established downstream of this double cavity premixer/burner configuration were measured and assessed under lean and ultra-lean operating conditions. The aim of this thesis was to further comprehend the impact of stratifying the inlet fuelair mixture on the reacting wake characteristics for a range of practical stabilizers under a variety of inlet fuel-air settings. In the first part of this thesis, the isothermal mean and turbulent flow features downstream of a variety of axisymmetric baffles was initially examined. The effect of different shapes, (cone or disk), blockage ratios, (0.23 and 0.48), and rim thicknesses of these baffles was assessed. The variations of the recirculation zones, back flow velocity magnitude, annular jet ejection angles, wake development, entrainment efficiency, as well as several turbulent flow features were obtained, evaluated and appraised. Next, a comparative examination of the counterpart turbulent cold fuel-air mixing performance and characteristics of stratified against fully-premixed operation was performed for a wide range of baffle geometries and inlet mixture conditions. Scalar mixing and entrainment properties were investigated at the exit plane, at the bluff body annular shear layer, at the reattachment region and along the developing wake were investigated. These isothermal studies provided the necessary background information for clarifying the combustion properties and interpreting the trends in the counterpart turbulent reacting fields. Subsequently, for selected bluff bodies, flame structures and behavior for operation with a variety of reacting conditions were demonstrated. The effect of inlet fuel-air mixture settings, fuel type and bluff body geometry on wake development, flame shape, anchoring and structure, temperatures and combustion efficiencies, over lean and close to blow-off conditions, was presented and analyzed. For the obtained measurements infrared radiation, particle image velocimetry, laser doppler velocimetry, chemiluminescence imaging set-ups, together with Fouriertransform infrared spectroscopy, thermocouples and global emission analyzer instrumentation was employed. This helped to delineate a number of factors that affectcold flow fuel-air mixing, flame anchoring topologies, wake structure development and overall burner performance. The presented data will also significantly assist the validation of computational methodologies for combusting flows and the development of turbulence-chemistry interaction models.


Author(s):  
Suhyeon Park ◽  
Siddhartha Gadiraju ◽  
Jaideep Pandit ◽  
Srinath Ekkad ◽  
Federico Liberatore ◽  
...  

PIV measurements to understand the flow differences between reacting and non-reacting conditions were conducted in an optically accessible single can combustor. An industrial fuel nozzle was installed at the inlet of the test section to generate the swirl flow for flame stabilization and simulate realistic conditions of a gas turbine combustor. Five different equivalence ratios between 0.50 and 0.75 were tested with propane as fuel. Main air flow was also varied from Reynolds number from 50000 to 110000 with respect to the fuel nozzle diameter. Effect of preheating was tested by changing inlet air temperature from 23 to 200°C. The pressure at the test section was close to atmospheric condition throughout the tests. The measurements were performed with a 2-D PIV system. Time-averaged flow velocity, vorticity and turbulent kinetic energy (TKE) were obtained from PIV data and flow structures under different conditions were compared. Swirl jet impingement location on the liner wall was determined as well to understand the impact on the liner wall. Proper orthogonal decomposition (POD) further analyzed the data to compare coherent structures in the reacting and non-reacting flows.


Sign in / Sign up

Export Citation Format

Share Document