Investigation on Buckling Behavior of Cylindrical Liquid Storage Tanks Under Seismic Loading: 3rd Report — Proposed Design Procedure Considering Dynamic Response Reduction

Author(s):  
Akihisa Sugiyama ◽  
Koji Setta ◽  
Yoji Kawamoto ◽  
Koji Hamada ◽  
Hideyuki Morita ◽  
...  

As for thin walled cylindrical liquid storage tanks in nuclear power plants, the current elastic design guideline against seismic loading might result in too conservative component design as compared with elasto-plastic design in general industries. Therefore, it is thought possible to make the design guideline more reasonable by taking dynamic response reduction into account. In this series of study, experiments using scaled models were carried out, and seismic behavior of thin walled cylindrical liquid storage tanks was simulated to investigate energy absorption capacity and seismic resistance of those tanks. In this 3rd report of series of studies, seismic behavior of tanks was simulated to estimate a dynamic response reduction factor. This factor is based on the energy absorption capacity of structures. Through experiments and numerical study, a response reduction factor to design thin walled cylindrical liquid storage tanks has been proposed.

2007 ◽  
Vol 120 ◽  
pp. 199-206
Author(s):  
Hitohsi Kaguchi ◽  
Koji Hamada ◽  
Akihisa Sugiyama ◽  
Hideyuki Morita ◽  
Koji Setta ◽  
...  

As for thin walled cylindrical liquid storage tanks in nuclear power plants, the current elastic design guideline against seismic loading might result in too conservative component design. Therefore, it is thought possible to make the design procedure more reasonable by taking dynamic response reduction into account. Experiments using scaled models as well as numerical analyses were carried out, and seismic behavior of thin walled cylindrical liquid storage tanks was simulated to investigate energy absorption capacity and seismic resistance of those tanks. Based on the test and analysis results, assessment procedure for buckling considering post-buckling behavior has been proposed.


2014 ◽  
Vol 1019 ◽  
pp. 96-102
Author(s):  
Ali Taherkhani ◽  
Ali Alavi Nia

In this study, the energy absorption capacity and crush strength of cylindrical thin-walled structures is investigated using nonlinear Finite Elements code LS-DYNA. For the thin-walled structure, Aluminum A6063 is used and its behaviour is modeled using power-law equation. In order to better investigate the performance of tubes, the simulation was also carried out on structures with other types of cross-sections such as triangle, square, rectangle, and hexagonal, and their results, namely, energy absorption, crush strength, peak load, and the displacement at the end of tubes was compared to each other. It was seen that the circular cross-section has the highest energy absorption capacity and crush strength, while they are the lowest for the triangular cross-section. It was concluded that increasing the number of sides increases the energy absorption capacity and the crush strength. On the other hand, by comparing the results between the square and rectangular cross-sections, it can be found out that eliminating the symmetry of the cross-section decreases the energy absorption capacity and the crush strength. The crush behaviour of the structure was also studied by changing the mass and the velocity of the striker, simultaneously while its total kinetic energy is kept constant. It was seen that the energy absorption of the structure is more sensitive to the striker velocity than its mass.


2014 ◽  
Vol 599 ◽  
pp. 141-144 ◽  
Author(s):  
M. Afrasiab ◽  
G. Faraji ◽  
V. Tavakkoli ◽  
M.M. Mashhadi ◽  
A.R. Bushroa

Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4304
Author(s):  
Miroslaw Ferdynus ◽  
Patryk Rozylo ◽  
Michal Rogala

The paper presents the results of numerical tests of impact and energy absorption capacity of thin-walled columns, subjected to axial impact loading, made of aluminum alloy, and having a square cross-section and spherical indentations on their lateral surfaces. The numerical models were validated using an experiment that was conducted on the Instron CEAST 9350 High Energy System drop hammer. Material properties of the applied aluminum alloy were determined on the basis of a static tension test. The crushing behavior of the columns and some crashworthiness indicators were investigated. On the basis of the results of the conducted analyses, conclusions were drawn about the most beneficial design/constructional variants in terms of achieved crashworthiness parameters.


2010 ◽  
Vol 37 (2) ◽  
pp. 262-272 ◽  
Author(s):  
J. Z. Chen ◽  
M. R. Kianoush

This paper presents the results of parametric studies on the seismic response of concrete rectangular liquid storage tanks using the generalized single-degree-of-freedom (SDOF) system. The effects of height of liquid and width of tank on the dynamic response of liquid storage tanks are investigated. The liquid level varies from the empty condition to a full tank. Also, instead of the commonly used ratio of width of tank to liquid height, Lx/HL, the ratio of width of tank to full height of the tank wall, Lx/Hw, is used as a characteristic parameter of tanks to study the effect of tank size on the dynamic response. The trends of added mass of liquid, effective height, and natural frequencies for different sizes of tanks are established. The values of the added mass of liquid due to impulsive hydrodynamic pressure and the effective height in the relationship with the ratios Lx/Hw and HL/Hw are determined and can be used in the seismic design of liquid storage tanks. Since the natural frequencies of liquid-containing structures are within a band of frequencies between that of a full tank and that of an empty tank, the recommended frequency to be used in the design of the tank wall is the frequency that causes the maximum dynamic response .


Author(s):  
Hideyuki Morita ◽  
Tomohiro Ito ◽  
Koji Hamada ◽  
Akihisa Sugiyama ◽  
Yoji Kawamoto ◽  
...  

When a thin walled cylindrical liquid storage tank suffers a large seismic base excitation, buckling phenomena such as elephant foot bulge at the bottom portion and nonlinear ovaling vibration at the upper portion shows nonlinearity between the input and response level and suddenly occurs for the excessive input level, thus will be called as “nonlinear ovaling vibration” hereafter in this paper, may be caused. In the 1st report, the elephant foot bulge phenomena and the liquid pressure effects were investigated. In this 2nd report of the series of studies, the effect of nonlinear ovaling vibration phenomena were investigated based on the dynamic buckling tests using scaled models of thin walled cylindrical liquid storage tanks for nuclear power plants. The mechanism and the effect of vertical excitation and liquid sloshing were also studied and discussed.


2007 ◽  
Vol 85 (1-2) ◽  
pp. 89-101 ◽  
Author(s):  
Cato Dørum ◽  
Odd Sture Hopperstad ◽  
Odd-Geir Lademo ◽  
Magnus Langseth

Author(s):  
Maria Vathi ◽  
Spyros A. Karamanos

Unanchored liquid storage tanks under strong earthquake loading tend to uplift. In the present study, the effects of base uplifting on the seismic response of unanchored tanks are presented with emphasis on elephant’s foot buckling, base plate strength and shell-to-base connection capacity. Towards this purpose, base uplifting mechanics is analyzed through a detailed simulation of the tank using non-linear finite elements, and a static pushover analysis is conducted that considers the hydrodynamic pressure distribution due to seismic loading on the tank wall and the base plate. The uplifting provisions from EN 1998-4 and API 650 Appendix E standards are briefly described. Numerical results for a typical 27.8-meter-diameter steel tank are compared with the above design provisions.


Sign in / Sign up

Export Citation Format

Share Document