Excellent energy absorption capacity of nanostructured Cu–Zn thin-walled tube

2014 ◽  
Vol 599 ◽  
pp. 141-144 ◽  
Author(s):  
M. Afrasiab ◽  
G. Faraji ◽  
V. Tavakkoli ◽  
M.M. Mashhadi ◽  
A.R. Bushroa
2014 ◽  
Vol 1019 ◽  
pp. 96-102
Author(s):  
Ali Taherkhani ◽  
Ali Alavi Nia

In this study, the energy absorption capacity and crush strength of cylindrical thin-walled structures is investigated using nonlinear Finite Elements code LS-DYNA. For the thin-walled structure, Aluminum A6063 is used and its behaviour is modeled using power-law equation. In order to better investigate the performance of tubes, the simulation was also carried out on structures with other types of cross-sections such as triangle, square, rectangle, and hexagonal, and their results, namely, energy absorption, crush strength, peak load, and the displacement at the end of tubes was compared to each other. It was seen that the circular cross-section has the highest energy absorption capacity and crush strength, while they are the lowest for the triangular cross-section. It was concluded that increasing the number of sides increases the energy absorption capacity and the crush strength. On the other hand, by comparing the results between the square and rectangular cross-sections, it can be found out that eliminating the symmetry of the cross-section decreases the energy absorption capacity and the crush strength. The crush behaviour of the structure was also studied by changing the mass and the velocity of the striker, simultaneously while its total kinetic energy is kept constant. It was seen that the energy absorption of the structure is more sensitive to the striker velocity than its mass.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4304
Author(s):  
Miroslaw Ferdynus ◽  
Patryk Rozylo ◽  
Michal Rogala

The paper presents the results of numerical tests of impact and energy absorption capacity of thin-walled columns, subjected to axial impact loading, made of aluminum alloy, and having a square cross-section and spherical indentations on their lateral surfaces. The numerical models were validated using an experiment that was conducted on the Instron CEAST 9350 High Energy System drop hammer. Material properties of the applied aluminum alloy were determined on the basis of a static tension test. The crushing behavior of the columns and some crashworthiness indicators were investigated. On the basis of the results of the conducted analyses, conclusions were drawn about the most beneficial design/constructional variants in terms of achieved crashworthiness parameters.


2007 ◽  
Vol 85 (1-2) ◽  
pp. 89-101 ◽  
Author(s):  
Cato Dørum ◽  
Odd Sture Hopperstad ◽  
Odd-Geir Lademo ◽  
Magnus Langseth

2017 ◽  
Vol 59 (3) ◽  
pp. 244-248 ◽  
Author(s):  
Mohammad Afrasiab ◽  
Ghader Faraji ◽  
Vahid Tavakkoli ◽  
Mahmoud Mosavi Mashhadi ◽  
Hamed Afrasiab

2013 ◽  
Vol 437 ◽  
pp. 158-163
Author(s):  
Wei Liang Dai ◽  
Xu Guang Li ◽  
Qing Chun Wang

Energy absorbing characteristics of the non-stiffened and stiffened single hat sections subjected to quasi-static axial crushing were experimentally investigated. First non-stiffened hat sections were axially crushed, then structures with different stiffened methods (stiffened in hat and stiffened in the plate) were tested, finally energy absorption capacities of these structures were compared. Test results showed that, for the appropriate designed stiffened tube, the mean crush force and mass specific energy absorption were increased significantly compared to the non-stiffened. Stiffened in hat section showed a little more energy absorption capacity than that stiffened in the plate, but the structure may sustain a global bending.


2019 ◽  
Vol 11 (1) ◽  
pp. 41-68 ◽  
Author(s):  
Chukwuemeke William Isaac

The dynamic oblique crushing of circular thin-walled tubes with the presence of non-propagating crack was investigated numerically. The material considered was strain rate sensitive with crack located at the distal end of the tube. Major crashworthiness parameters were obtained and the analysis of the structural response for idealized and finite element crushed thin-walled tubes was also carried out. The study shows that crack initiation on energy absorbing tubes increase their crushing force efficiency under oblique impact, decrease their crushing force efficiency under axial impact and reduce their crashworthiness performance such as the energy absorption capacity and specific energy absorption under axial and oblique impact. Results of the crashworthiness parameters, deformation modes, damage morphology, stress–strain relations, absorption energy characteristics and crushing force-displacement history were obtained. Furthermore, the numerical study reveals both the desirable and undesirable consequence of crack on the overall crashworthiness performance of energy absorbing circular thin-walled tubes.


Author(s):  
D. Tankara ◽  
R. Moradi ◽  
Y. Y. Tay ◽  
H. M. Lankarani

Over the past few decades, much research work has been conducted on the development of advance crashworthy structures to increase the energy absorption of mechanical systems. Thin-walled tubes are primarily used as structural reinforcements and as energy absorbing components. The high-energy absorption characteristics of cellular foams have attracted great attention to further enhance this superior capability. In particular, nanotechnology has been utilized in the development of advanced cellular materials for the automotive and aerospace industry. The primary objective of this study is to conduct a parametric study using experimental and finite element methods to examine and quantify the performances of thin-walled tube when filled with carbon nano particulates. To accomplish this study, compression tests are carried out to obtain the load-deflection curves of the nano-foams when subjected to different weight percentages of carbon nano fibers. Next, the specific energy absorbed and the collapse mechanism of nano foam filled thin-walled tubes are analyzed and compared with the empty ones. Finally, an illustrative study on the use of nano foams for vehicular applications is presented by using a vehicle bumper numerical model. The carbon nano foam is installed into the cavity of the bumper model and a full-frontal crash simulation is performed. Overall, this study has shown that the energy absorption capacity of thin-walled structures can be significantly enhanced with the use of carbon nano foams.


Sign in / Sign up

Export Citation Format

Share Document