Numerical Investigation of Cross-Section on Aluminum A6063 Thin-Walled Structures under Low-Velocity Impact Loading

2014 ◽  
Vol 1019 ◽  
pp. 96-102
Author(s):  
Ali Taherkhani ◽  
Ali Alavi Nia

In this study, the energy absorption capacity and crush strength of cylindrical thin-walled structures is investigated using nonlinear Finite Elements code LS-DYNA. For the thin-walled structure, Aluminum A6063 is used and its behaviour is modeled using power-law equation. In order to better investigate the performance of tubes, the simulation was also carried out on structures with other types of cross-sections such as triangle, square, rectangle, and hexagonal, and their results, namely, energy absorption, crush strength, peak load, and the displacement at the end of tubes was compared to each other. It was seen that the circular cross-section has the highest energy absorption capacity and crush strength, while they are the lowest for the triangular cross-section. It was concluded that increasing the number of sides increases the energy absorption capacity and the crush strength. On the other hand, by comparing the results between the square and rectangular cross-sections, it can be found out that eliminating the symmetry of the cross-section decreases the energy absorption capacity and the crush strength. The crush behaviour of the structure was also studied by changing the mass and the velocity of the striker, simultaneously while its total kinetic energy is kept constant. It was seen that the energy absorption of the structure is more sensitive to the striker velocity than its mass.

2019 ◽  
Vol 252 ◽  
pp. 07005 ◽  
Author(s):  
Quirino Estrada ◽  
Dariusz Szwedowicz ◽  
Alejandro Rodriguez-Mendez ◽  
Jesús Silva-Aceves ◽  
Lara C. Wiebe ◽  
...  

The study of bending behaviour of thin-walled structures has gained importance since lateral impact is the second most common scenario in automobile crashes. The current paper analyses an effect of partition plates on energy absorption (Ea) of circular profiles under lateral loads. For this purpose, several numerical analyses using Abaqus/Explicit finite element software were carried out. The evaluated specimens have circular cross-sections reinforced by different arrangement of partition plates. In order to get reliable outcome, special emphasis was placed on damage modelling by Johnson-Cook failure model for aluminium. From the results considering a single profile, better Ea was registered for structures with plates in a range from 6% to 34%. Reduction in peak load (Pmax) up to 13% and an increase in crush force efficiency (CFE) in 14.86% was also computed. Regarding profiles with plates, it was determined that crashworthiness performance depends on an arrangement of plates on the cross-section more than their thickness and number. Better performance was obtained when the circular cross-section was reinforced in the longitudinal and transversal direction by 4 plates.


Author(s):  
Sanjay Patil ◽  
Arvind Bhosale ◽  
Vijaypatil Dhepe ◽  
Dheeraj Lengare ◽  
Ravi Kakde

The continuing efforts of automotive technology aim to deliver even greater safety benefits and reduce the weight of a vehicle. Thin-walled beams (TWB) are widely used as strengtheners or energy absorbers in vehicle bodies due to their lightweight and excellent energy absorption capacity. Thus, researchers are interested in the collapse behaviour and mechanical properties of thin-walled beams under static and dynamic loadings. Circular TWB is commonly used in vehicle side doors. In the event of a side collision, this beam deforms and absorbs the greatest amount of impact energy. In this study, the energy absorption capability and crashworthiness of polygonal cross-section TWBs subjected to lateral impact was investigated using numerical simulations. Polygonal TWB ranging from square to dodecagon, as well as circular cross section, were selected for this study. Energy absorption (EA), specific energy absorption (SEA) and crash force efficiency (CFE) crashworthiness indicators are employed to evaluate the bending collapse performance. Because TWB thickness and weight have a greater impact on bending performance, they were kept constant across all polygons. In ABAQUS explicit dynamic software, finite element simulations are performed, and plastic hinges and flattening patterns of all polygons are examined. The results show that heptagon, octagon, and nonagon cross-section TWB perform better in crashworthiness than square and circular TWB.


2020 ◽  
Vol 40 (7) ◽  
pp. 615-627
Author(s):  
Mohd Kamal Mohd Shah ◽  
Yeo Kiam Beng ◽  
Sanjay Mohan ◽  
Mohd Nizam Husen ◽  
Irma Othman ◽  
...  

AbstractPultrusion is considered to be a cost efficient method for developing composite structures. It facilitates the fabrication of uniform cross-section products with improved fiber alignment, mechanical properties, good surface characteristics, etc. In order to ascertain the crashworthiness, the pultruded composites shall be able to resist impact loads, and in this concern, the energy absorption capacity of the pultruded composites must be explored. This article presents the experimental and numerical investigation of the crushing behavior of polyester based pultruded composite with rectangular cross section. Pultruded rectangular tubes with e-glass/polyester composites have been developed for this study. The cross-section of the tubes was developed into two triggering profiles, the uniform edge around the section and the tulip pattern. The tubes were subjected to impact loads, and the effect of these triggering profiles on the energy absorption capacity of the tubes has been investigated. The testing of all composites has been carried out at three different impact velocities (10, 20 and 45 mm/min). The results have revealed the dependence of crushing behavior of the tubes on the loading velocity and the triggered profiles. Lower peak load and high specific energy absorption (SEA) was observed in the tube with tulip pattern profile. The results obtained from the simulation have also shown consistency with the real-time experiments.


2011 ◽  
Vol 213 ◽  
pp. 88-92 ◽  
Author(s):  
Qing Chun Wang ◽  
Hao Long Niu ◽  
Guo Quan Wang ◽  
Yu Xin Wang

Different aluminum foam filling lengths were used to increase the bending energy absorbing capacity of the popularly used hat sections. Bending energy-absorption performance of the thin-walled tubes was numerically studied by explicit non-linear software LS-Dyna. First empty hat section subjected to quasi-static bending crushing was simulated, then structures with different aluminium foam filling lengths were calculated, finally energy absorption capacity of these structures were compared. Calculation results showed that, the internal energy absorbed and mass specific energy absorption capacity of foam filled thin walled structures were increased significantly compared to the empty sections. The reason of the improvement was mainly due to the contact of the aluminium foam and the structure. Aluminium foam filling is a promising method for improving lateral energy absorbing capacity of thin-walled sections.


2014 ◽  
Vol 599 ◽  
pp. 141-144 ◽  
Author(s):  
M. Afrasiab ◽  
G. Faraji ◽  
V. Tavakkoli ◽  
M.M. Mashhadi ◽  
A.R. Bushroa

Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4304
Author(s):  
Miroslaw Ferdynus ◽  
Patryk Rozylo ◽  
Michal Rogala

The paper presents the results of numerical tests of impact and energy absorption capacity of thin-walled columns, subjected to axial impact loading, made of aluminum alloy, and having a square cross-section and spherical indentations on their lateral surfaces. The numerical models were validated using an experiment that was conducted on the Instron CEAST 9350 High Energy System drop hammer. Material properties of the applied aluminum alloy were determined on the basis of a static tension test. The crushing behavior of the columns and some crashworthiness indicators were investigated. On the basis of the results of the conducted analyses, conclusions were drawn about the most beneficial design/constructional variants in terms of achieved crashworthiness parameters.


2007 ◽  
Vol 85 (1-2) ◽  
pp. 89-101 ◽  
Author(s):  
Cato Dørum ◽  
Odd Sture Hopperstad ◽  
Odd-Geir Lademo ◽  
Magnus Langseth

2008 ◽  
Vol 22 (31n32) ◽  
pp. 5578-5583 ◽  
Author(s):  
S. B. KIM ◽  
H. HUH ◽  
G. H. LEE ◽  
J. S. YOO ◽  
M. Y. LEE

This paper deals with the crashworthiness of an aluminum crash box for an auto-body with the various shapes of cross section such as a rectangle, a hexagon and an octagon. First, crash boxes with various cross sections were tested with numerical simulation to obtain the energy absorption capacity and the mean load. In case of the simple axial crush, the octagon shape shows higher mean load and energy absorption than the other two shapes. Secondly, the crash boxes were assembled to a simplified auto-body model for the overall crashworthiness. The model consists of a bumper, crash boxes, front side members and a sub-frame representing the behavior of a full car at the low speed impact. The analysis result shows that the rectangular cross section shows the best performance as a crash box which deforms prior to the front side member. The hexagonal and octagonal cross sections undergo torsion and local buckling as the width of cross section decreases while the rectangular cross section does not. The simulation result of the rectangular crash box was verified with the experimental result. The simulation result shows close tendency in the deformed shape and the load–displacement curve to the experimental result.


Sign in / Sign up

Export Citation Format

Share Document