Code Case 2286 Applied to the Design of Pressure Vessels

Author(s):  
Kanhaiya L. Bardia ◽  
Kim Nguyen ◽  
Manfred Lengsfeld ◽  
Donald G. LaBounty ◽  
Bernie Au

Code Case 2286-1 [1] of the ASME Boiler and Pressure Vessel Code [2][3] provides alternate rules for determining the allowable external pressure and compressive stresses for cylinders, cones, spheres, and formed heads in lieu of the rules of Section VIII, Divisions 1 and 2. The authors in this paper present a comparison of the longitudinal and circumferential compressive stresses in pressure vessels based on the methods outlined in Paragraph UG-28 of Division 1, Section VIII of the ASME Code and Code Case 2286-1. The Do/t ratio in this paper is limited to 600 which covers the majority of pressure vessel designs found in the petrochemical industry. A sample vessel shell design is presented applying both the ASME Code, Section VIII, Div. 1 method and that of Code Case 2286-1.

Author(s):  
Barry Millet ◽  
Patrizio Di Lillo ◽  
Richard Whipple ◽  
Kenneth Kirkpatrick ◽  
George Miller

Since the 1956 Edition of the ASME Boiler and Pressure Vessel Code Section VIII (ASME B&PV Code) [1], the Out-of-Roundness of circular sections of pressure vessels subject to external pressure have been inspected using a segmental template per paragraph UG-80(b)(2). Newly approved ASME Code Case 2789 “Laser Measurement for Out-of-Roundness Section VIII, Division 1” to the ASME B&PV Code expands the out of roundness checking to allow the use of laser measurement systems. Today with large vessels approaching 60 feet (18.2 m) in diameter, laser measuring systems allow an expeditious and cost effective method of inspection for out-of-roundness. The Code Case allows the fabricator to use measurements obtained from laser measuring to either verify the vessel in the arc segments or the entire vessel circumference is held to a circularity tolerance. The second option is similar to the requirements of European Standard EN 13445 (EN 13445) [2] which uses circularity. This paper will explore the origin and objective of the template and presents how laser measuring systems make use of the latest technology available to check for out-of-roundness. The paper will address laser measuring systems, procedures for taking measurements, and processing of the data into a format that can be verified by Authorized Inspectors.


Author(s):  
Dwight V. Smith

Historically, the ASME B&PV Code, Section VIII, Division 2, Alternative Rules for Construction of Pressure Vessels (Div.2), ASME [1], was usually considered applicable only for large, thick walled pressure vessels. Otherwise, ASME B&PV Code, Section VIII, Division 1, Rules for Construction of Pressure Vessels (Div. 1), ASME [2], was typically applied. A case can also be made for the application of the Div. 2 Code Section for some vessels of lesser thicknesses. Each vessel should be closely evaluated to ensure the appropriate choice of Code Section to apply. This paper discusses some of the differences between the Div. 1 and Div. 2 Code Sections, summarizes some of the main design requirements of Div. 2, and presents a ease for considering its use for design conditions not usually considered by some, to be appropriate for the application of Div. 2 of the ASME Code.


1986 ◽  
Vol 108 (4) ◽  
pp. 526-529
Author(s):  
A. E. Blach

Half-pipe heating channels are used on the outside of pressure vessels such as agitators, mixers, reactors, etc., to avoid the high external pressure associated with heating jackets. No applicable method of analysis is contained in the ASME Code and proof tests are normally required for registration with governing authorities. An analytical method is presented which permits the evaluation of stresses in shell and half pipe; numerical examples are included.


Author(s):  
Allen Selz ◽  
Daniel R. Sharp

Developed at the request of the US Department of Transportation, Section XII-Transport Tanks, of the ASME Boiler and Pressure Vessel Code addresses rules for the construction and continued service of pressure vessels for the transportation of dangerous goods by road, air, rail, or water. The standard is intended to replace most of the vessel design rules and be referenced in the federal hazardous material regulations, Title 49 of the Code of Federal Regulations (CFR). While the majority of the current rules focus on over-the-road transport, there are rules for portable tanks which can be used in marine applications for the transport of liquefied gases, and for ton tanks used for rail and barge shipping of chlorine and other compressed gases. Rules for non-cryogenic portable tanks are currently provided in Section VIII, Division 2, but will be moved into Section XII. These portable tank requirements should also replace the existing references to the outmoded 1989 edition of ASME Section VIII, Division 1 cited in Title 46 of the CFR. Paper published with permission.


Author(s):  
Barry Millet ◽  
Kaveh Ebrahimi ◽  
James Lu ◽  
Kenneth Kirkpatrick ◽  
Bryan Mosher

Abstract In the ASME Boiler and Pressure Vessel Code, nozzle reinforcement rules for nozzles attached to shells under external pressure differ from the rules for internal pressure. ASME BPVC Section I, Section VIII Division 1 and Section VIII Division 2 (Pre-2007 Edition) reinforcement rules for external pressure are less stringent than those for internal pressure. The reinforcement rules for external pressure published since the 2007 Edition of ASME BPVC Section VIII Division 2 are more stringent than those for internal pressure. The previous rule only required reinforcement for external pressure to be one-half of the reinforcement required for internal pressure. In the current BPVC Code the required reinforcement is inversely proportional to the allowable compressive stress for the shell under external pressure. Therefore as the allowable drops, the required reinforcement increases. Understandably, the rules for external pressure differ in these two Divisions, but the amount of required reinforcement can be significantly larger. This paper will examine the possible conservatism in the current Division 2 rules as compared to the other Divisions of the BPVC Code and the EN 13445-3. The paper will review the background of each method and provide finite element analyses of several selected nozzles and geometries.


Author(s):  
John J. Aumuller ◽  
Vincent A. Carucci

The ASME Codes and referenced standards provide industry and the public the necessary rules and guidance for the design, fabrication, inspection and pressure testing of pressure equipment. Codes and standards evolve as the underlying technologies, analytical capabilities, materials and joining methods or experiences of designers improve; sometimes competitive pressures may be a consideration. As an illustration, the design margin for unfired pressure vessels has decreased from 5:1 in the earliest ASME Code edition of the early 20th century to the present day margin of 3.5:1 in Section VIII Division 1. Design by analysis methods allow designers to use a 2.4:1 margin for Section VIII Division 2 pressure vessels. Code prohibitions are meant to prevent unsafe use of materials, design methods or fabrication details. Codes also allow the use of designs that have proven themselves in service in so much as they are consistent with mandatory requirements and prohibitions of the Codes. The Codes advise users that not all aspects of construction activities are addressed and these should not be considered prohibited. Where prohibitions are specified, it may not be readily apparent why these prohibitions are specified. The use of “forged bar stock” is an example where use in pressure vessels and for certain components is prohibited by Codes and standards. This paper examines the possible motive for applying this prohibition and whether there is continued technical merit in this prohibition, as presently defined. A potential reason for relaxing this prohibition is that current manufacturing quality and inspection methods may render a general prohibition overly conservative. A recommendation is made to better define the prohibition using a more measurable approach so that higher quality forged billets may be used for a wider range and size of pressure components. Jurisdictions with a regulatory authority may find that the authority is rigorous and literal in applying Code provisions and prohibitions can be particularly difficult to accept when the underlying engineering principles are opaque. This puts designers and users in these jurisdictions at a technical and economic disadvantage. This paper reviews the possible engineering considerations motivating these Code and standard prohibitions and proposes modifications to allow wider Code use of “high quality” forged billet material to reflect some user experiences.


Author(s):  
J Y Zheng ◽  
P Xu ◽  
L Q Wang ◽  
G H Zhu

Flat steel ribbon wound pressure vessels have been adopted by the ASME Boiler and Pressure Vessel Code, Section VIII, Division 1 and Division 2. An excellent safety and service record has been built up in the past 34 years. Based on the interfacial friction model proposed by Zheng [1], a more accurate method for predicting the stresses in a flat steel ribbon wound pressure vessel is offered in this paper, taking account of the axial displacement, the change in the helical winding angle, the interfacial friction between ribbon layers and the effect of lamination. Comparison between experimental results of five test vessels with an inside diameter varying from 350 to 1000 mm, four different helical winding angles (18, 24, 27 and 30°), two width—thickness ratios of the ribbon (20 and 22.86) and results of calculation using the stress formulae available demonstrates that the method in this paper is more accurate and that interfacial friction gives a marked strengthening contribution to the axial strength of the vessel.


Author(s):  
Richard J. Basile ◽  
Clay D. Rodery

Appendix M of Section VIII, Division 1 of the ASME Boiler and Pressure Vessel Code[1] provides rules for the use of isolation (stop) valves between ASME Section VIII Division 1 pressure vessels and their protective pressure relieving device(s). These current rules limit stop valve applications to those that isolate the pressure relief valve for inspection and repair purposes only [M-5(a), M-6], and those systems in which the pressure originates exclusively from an outside source [M-5(b)]. The successful experience of the refining and petrochemical industries in the application and management of full area stop valves between pressure vessels and pressure relief devices suggested that the time was appropriate to review and consider updates to the current Code rules. Such updates would expand the scope of stop valve usage, along with appropriate safeguards to ensure that all pressure vessels are provided with overpressure protection while in operation. This white paper provides a summary of the current Code rules, describes the current practices of the refining and petrochemical industries, and provides an explanation and the technical bases for the Code revisions.


Author(s):  
Shyam Gopalakrishnan ◽  
Ameya Mathkar

Abstract Most of the heavy thickness boiler and pressure vessel components require heat treatment — in the form of post weld heat treatment (PWHT) and sometimes coupled with local PWHT. It is also a common practice to apply post heating/ intermediate stress relieving/ dehydrogenation heat treatment in case of alloy steels. The heat treatment applied during the various manufacturing stages of boiler and pressure vessel have varying effects on the type of material that is used in fabrication. It is essential to understand the effect of time and temperature on the properties (like tensile and yield strength/ impact/ hardness, etc.) of the materials that are used for fabrication. Considering the temperature gradients involved during the welding operation a thorough understanding of the time-temperature effect is essential. Heat treatments are generally done at varying time and temperatures depending on the governing thickness and the type of materials. The structural effects on the materials or the properties of the materials tends to vary based on the heat treatment. All boiler and pressure vessel Code require that the properties of the material should be intact and meet the minimum Code specification requirements after all the heat treatment operations are completed. ASME Code(s) like Sec I, Section VIII Division 1 and Division 2 and API recommended practices like API 934 calls for simulation heat treatment of test specimen of the material used in fabrication to ascertain whether the intended material used in construction meets the required properties after all heat treatment operations are completed. The work reported in this paper — “Heat treatment of fabricated components and the effect on properties of materials” is an attempt to review the heat treatment and the effect on the properties of materials that are commonly used in construction of boiler and pressure vessel. For this study, simulation heat treatment for PWHT of test specimen for CS/ LAS plate and forging material was carried out as specified in ASME Section VIII Div 1, Div 2 and API 934-C. The results of heat treatment on material properties are plotted and compared. In conclusion recommendations are made which purchaser/ manufacturer may consider for simulation heat treatment of test specimen.


1996 ◽  
Vol 118 (2) ◽  
pp. 137-141 ◽  
Author(s):  
Z. F. Sang ◽  
Y. Z. Zhu ◽  
G. E. O. Widera

The main purpose of this paper is to provide an applicable method to establish reliability factors for expanded tube-to-tubesheet joints. The paper also reports on the results of a preliminary study to validate experimentally the reliability efficiencies listed in Table A-2 of Appendix A of Section VIII, Division 1, of the Boiler and Pressure Vessel Code (ASME, 1986), and tightness of expanded tube-tubesheet joints. A comparison between the actual reliability factors fr determined from testing the damage strength of the joint and calculated according to Appendix A-4 of the ASME Code and those of Table A-2 is carried out. The results are discussed in light of the restrictions inherent in Table A-2. It is confirmed that some existing values of fr are conservative, while others are less so.


Sign in / Sign up

Export Citation Format

Share Document