A Global Limit Load Solution for Plates With Semi-Elliptical Surface Cracks Under Combined Tension and Bending

Author(s):  
Yuebao Lei

A new global limit load solution is developed in this paper for a precise semi-elliptical surface crack in a plate under combined tension and bending, based on the net-section collapse principle. The new global limit load solution is compared with finite element (FE) results for the semi-elliptical crack, and with the global limit load solution for the circumscribing rectangular crack. The predictions of the new equation are conservative and close to the elastic-perfectly-plastic FE results for shallow cracks. For narrow plates with deep cracks, however, no FE results for the global limit load are available. The differences between the limit load solutions for a semi-elliptical crack and a rectangular crack are negligible for very wide plates but significant for narrow plates, depending on the normalised crack depth and the ratio between the crack length and width of the plate.

2011 ◽  
Vol 134 (1) ◽  
Author(s):  
Rongsheng Li ◽  
Zengliang Gao ◽  
Yuebao Lei

A global limit load solution is derived in this paper for embedded off-set elliptical cracks in a plate under combined tension and bending, based on the net-section collapse principle. The new limit load solution is validated using 3D elastic-perfectly plastic finite element (FE) limit analyses. The results show that the limit load solution developed in this paper is conservative and close to the elastic-perfectly-plastic FE results. The global limit load solution is then compared with the limit load solution based on the rectangular crack assumption, showing that the difference between the two solutions is negligible as the ratio of crack length to the plate width is less than 0.25. However, the difference may become significant when the ratio approaches one.


Author(s):  
Rongsheng Li ◽  
Zhiming Fang ◽  
Lihua Liang ◽  
Zengliang Gao ◽  
Yuebao Lei

A global limit load solution is obtained in this paper for an embedded elliptical crack in a plate under combined tension and bending, based on the net-section collapse principle. The limit load solution is compared with three-dimension finite (3-D) element analysis limit load solution and the global limit load solution of a plate with an embedded rectangular crack. The limit load solution developed in this paper is conservative and close to the elastic-perfectly-plastic FE solutions. It is suitable for the estimation of the limit load. By comparison, it can be observed that the limit load of an embedded elliptical crack is larger than that of a rectangular crack. The difference between limit loads of these two cracks is negligible as the ratio of the depth to length of the crack is close to zero, however, the difference gets distinct as the ratio increases. The rectangular solutions are accurate enough as the ratio is less than 0.5 in engineering applications, and the elliptical solutions are more appropriate to the calculated limit load when the ratio is larger than 0.5.


2011 ◽  
Vol 52-54 ◽  
pp. 43-48 ◽  
Author(s):  
Al Emran Ismail ◽  
Ahmad Kamal Ariffin ◽  
Shahrum Abdullah ◽  
Mariyam Jameelah Ghazali ◽  
Ruslizam Daud

This paper presents a non-linear numerical investigation of surface cracks in round bars under bending moment by using ANSYS finite element analysis (FEA). Due to the symmetrical analysis, only quarter finite element (FE) model was constructed and special attention was given at the crack tip of the cracks. The surface cracks were characterized by the dimensionless crack aspect ratio, a/b = 0.6, 0.8, 1.0 and 1.2, while the dimensionless relative crack depth, a/D = 0.1, 0.2 and 0.3. The square-root singularity of stresses and strains was modeled by shifting the mid-point nodes to the quarter-point locations close to the crack tip. The proposed model was validated with the existing model before any further analysis. The elastic-plastic analysis under remotely applied bending moment was assumed to follow the Ramberg-Osgood relation with n = 5 and 10. J values were determined for all positions along the crack front and then, the limit load was predicted using the J values obtained from FEA through the reference stress method.


2009 ◽  
Vol 44 (6) ◽  
pp. 407-416 ◽  
Author(s):  
P J Budden ◽  
Y Lei

Limit loads for a thick-walled cylinder with an internal or external fully circumferential surface crack under pure axial load are derived on the basis of the von Mises yield criterion. The solutions reproduce the existing thin-walled solution when the ratio between the cylinder wall thickness and the inside radius tends to zero. The solutions are compared with published finite element limit load results for an elastic–perfectly plastic material. The comparison shows that the theoretical solutions are conservative and very close to the finite element data.


Author(s):  
J. L. Gordon ◽  
D. P. Jones

The capability to obtain limit load solutions of plates with triangular penetration patterns using fourth order functions to represent the collapse surface has been presented in previous papers. These papers describe how equivalent solid plate elastic-perfectly plastic finite element capabilities are generated and demonstrate how such capabilities can be used to great advantage in the analysis of tubesheets in large heat exchanger applications. However, these papers have pointed out that although the fourth order functions can produce sufficient accuracy for many practical applications, there are situations where improvements in the accuracy of in-plane and transverse shear are desirable. This paper investigates the use of a sixth order function to represent the collapse surface for improved accuracy of the in-plane response. Explicit elastic-perfectly plastic finite element solutions are obtained for unit cells representing an infinite array of circular penetrations arranged in an equilateral triangular array. These cells are used to create a numerical representation of the complete collapse surfaces for a number of ligament efficiencies (h/P where h is the minimum ligament width and P is the distance between hole centers). Each collapse surface is then fit to a sixth order function that satisfies the periodicity of the hole pattern. Sixth-order collapse functions were developed for h/P values between .05 and .50. Accuracy of the sixth order and the fourth order functions are compared. It was found that the sixth order function is indeed more accurate, reducing the error from 12.2% for the fourth order function to less than 3% for the sixth order function.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Phuong H. Hoang ◽  
Kunio Hasegawa ◽  
Bostjan Bezensek ◽  
Yinsheng Li

The circumferential flaw evaluation procedures in ASME Boiler and Pressure Vessel Code Section XI nonmandatory Appendix C are currently limited to straight pipes under pressure and bending loads without consideration of torsion loading. The Working Group on Pipe Flaw Evaluation of the ASME Boiler and Pressure Vessel Code is developing guidance for considering the effects of torsion by a mean of an equivalent bending moment, which is a square root of sum square combination of bending moment and torsion load with a weighted factor for torsion moment. A torsion weighted factor, Ce, is established in this paper using large strain finite element limit load analysis with elastic perfectly plastic materials. Planar flaws and nonplanar flaws in a 10.75 in. (273 mm) OD pipe are investigated. Additionally, a finite element J-integral calculation is performed for a planar through wall circumferential flaw with elastic plastic materials subjected to bending and torsion load combinations. The proposed Ce factor for planar flaws is intended for use with the ASME B&PV Code Section XI, Appendix C for limit load and Elastic Plastic Fracture Mechanics (EPFM) circumferential planar flaw evaluations.


2006 ◽  
Vol 321-323 ◽  
pp. 724-728
Author(s):  
Nam Su Huh ◽  
Yoon Suk Chang ◽  
Young Jin Kim

The present paper provides plastic limit load solutions for axial and circumferential through-wall cracked pipes based on detailed three-dimensional (3-D) finite element (FE) limit analysis using elastic-perfectly plastic behavior. As a loading condition, both single and combined loadings are considered. Being based on detailed 3-D FE limit analysis, the present solutions are believed to be valuable information for structural integrity assessment of cracked pipes.


2013 ◽  
Vol 785-786 ◽  
pp. 1151-1158
Author(s):  
Zhi Bin Zhu ◽  
Xiao Xiang Yang ◽  
Li Jing Chen ◽  
Nai Chang Lin ◽  
Zhi Tuo Wang ◽  
...  

Based on the viscoelastic material property of polyethylene pipe, software ANSYS was used to simulate and analyze the mechanical property of polyethylene pipe butt fusion joints with circumferential surface crack defects. The viscoelastic material creep parameters were characterized as Prony series and 1/4 node singular element was selected for meshing along the boundaries of the crack, then the stress intensity factor of polyethylene pipe butt fusion joints with circumferential surface crack was calculated under the uniform internal pressure. Through the finite element simulation, the result showed that polyethylene pipe were most likely to fracture failure when crack initiated. Thus the viscoelasticity of materials can be ignored when analyzing the stress intensity factor of circumferential surface cracks of polyethylene pipe. the main influencing factor of the circumferential crack defects was the ratio of the crack depth to the thickness of polyethylene pipe.


Author(s):  
G. Wilkowski ◽  
S. Kalyanam ◽  
Y. Hioe ◽  
F. W. Brust ◽  
S. Pothana ◽  
...  

Abstract Work published for the first time at the ASME PVP 2017 conference showed that when on the upper-shelf, the toughness measured directly from surface-cracked pipe tests decreased as the flaw depth increased. A similar trend existed in SENT tests. Initially it was found that this flaw depth sensitivity of the toughness occurred for a very tough material like TP304 stainless steel. The significance of that result was that even for a material where limit-load was thought to exist, as the flaw depth increased the toughness dropped appreciably, and the failure analysis mode changed from limit-load to elastic-plastic fracture. Experimentally, this made sense because it explained the observed phenomena of load-controlled leak-versus-break behavior for circumferential surface-cracked pipes (as will be shown for several pipe tests), but that LBB behavior is not predictable from circumferential flaw limit-load analysis. Furthermore, the flaw depth effect on toughness also exists for axial surface cracks and even in flat plates with surface cracks. For axial surface cracks the implication was that the long-used empirical surface-crack bulging factor from Maxey/Kiefner (incorporated in many international codes and standards) actually incorporated both the bulging factor and the toughness changes with flaw depth. Because of the change in toughness with flaw depth, when using detailed finite-element fracture analyses for the crack-driving force it is possible to have more error in the failure stress predictions if a constant toughness is assumed for all surface-flaw depths. In fact, in another paper in the ASME 2019 PVP conference it will be shown that the toughness in a wrought TP304 elbow at crack initiation of a circumferential surface crack that was 68% of the thickness was about 1/3rd of the toughness from a standard 1T CT specimen made from the same material. Those results will also be reviewed. Similar results of toughness decreasing with flaw depth in surface-cracked pipes and SENT specimens for various materials over a large range of strain-hardening behavior will show the toughness decrease trend with flaw depth is consistent. To understand these trends more theoretically, 3D FE analyses were also conducted for one initial set of TP304 SENT specimens with a wide range of a/w values (0.3 < a/w < 0.9). The initiation toughness decreased by a factor of 5 to 6 as the crack depth increased; however, the Q value coinciding to the load at the start of ductile tearing was constant for the wide range of a/W values. Q at the start of ductile tearing in the SENT (Qi) was more consistent at normalized distances from the crack tip, rσo/J that were in the range from 0.25 to 1.5 rather than just the popularly considered rσo/J = 2. Hence, by having one SENT test result with a single a/W value, the Ji value for any other a/W can then be calculated. This is consistent with the experimental trends to date, but unfortunately Ji was found to be not proportional to the Q values as is conventionally assumed by many researchers at this time.


Author(s):  
Y. Hioe ◽  
S. Kalyanam ◽  
G. Wilkowski ◽  
S. Pothana ◽  
J. Martin

A series of pipe tests with circumferential surface cracks has been conducted along with fracture toughness tests using single-edge notch tension (SENT) specimens having similar crack depths and crack orientations as the surface-cracked pipes. This paper presents observation of measured fracture toughness variation due to the crack depth and discusses the effect of constraint on the material resistance to fracture. Crack-tip-opening displacement (CTOD) measurements were obtained with the use of a dual clip-gauge mounted on both the SENT specimens and center of the surface-cracks in the pipes. CTOD was obtained at both the crack initiation and during the crack growth through the ligament. CTOD is a direct measure of the material toughness in the pipe and SENT tests. CTOD at crack initiation and during crack growth can also be related to the material J-Resistance (J-R) curve. Commonly, the material resistance is assumed to be the same for all circumferential surface-crack geometries in a surface-cracked pipe fracture mechanics analyses. However, based on experimental observations on a series of recently conducted surface-cracked pipe tests, the CTOD at the center of the surface crack at the start of ductile tearing and maximum moment changed with the depth of the surface crack. This is believed to be a constraint effect on plasticity in the ligament which depends on crack depth. The CTOD values at crack initiation were decreasing linearly with crack depth. This linear decrease in CTOD trend with flaw depth was also observed in SENT tests. More importantly, the decrease in CTOD with surface crack depth was significant enough that the failure mode changed from being limit-load to elastic-plastic fracture even in relatively small-diameter TP304 stainless steel pipe tests. This toughness drop explains why the Net-Section-Collapse (limit-load) analysis overpredicted the maximum moment for some crack geometries, and why the deeper surface cracks tore through the pipe thickness at moments below that predicted by the NSC analysis for a through-wall crack of the same circumferential length. An “Apparent NSC Analysis” was developed in a companion paper to account for the changing toughness with crack depth [1]. Finally, this same trend in decreasing toughness with flaw depth is apparent in surface-cracked flat plates [2] and axial surface flaws in pipes [3]. The leak-before-break behavior for axial surface cracks is also not explained by numerical calculations of the crack-driving force when assuming the toughness is constant for all surface cracks and the through-wall cracks, but the change in toughness with surface flaw depth explains this behavior. Previously, axial flaw empirical limit-load solution was developed by Maxey and Kiefner [4], and is consistent with the observations from this paper.


Sign in / Sign up

Export Citation Format

Share Document