Using Finite Element Analysis Combined With Strain Gage Testing to Do Proof Test to Establish MAWP

Author(s):  
Donald J. Florizone

An amine reboiler was constructed with very large openings in one semi-elliptical head. The openings extended beyond the “spherical” portion of the head into the knuckle region. The vessel was designed to 1998 ASME Section VIII Division 1 (VIII-1). Initially the manufacturer of the amine reboiler vessel chose the proof test after the calculations submitted to the approval agency were not accepted. Non-destructive strain gage proof testing per VIII-1 UG-101(n) was planned, but the minimum proof test pressure to achieve the desired MAWP exceeded the maximum firetube flange test pressure therefore an alternate method was chosen. Finite element analysis (FEA) was done in addition to the strain gage testing. The strain gage results at the maximum hydrotest pressure were used to verify the FEA calculations. The FEA calculated strains were higher than the measured strains. This indicated that the assumptions made in the computer model were conservative. By combining FEA with strain gauge testing, the design was proven to meet Code requirements.

Author(s):  
Dipak K. Chandiramani ◽  
Shyam Gopalakrishnan ◽  
Ameya Mathkar

Clauses UG-36 through UG-43 of ASME Section VIII Division 1 [1], describe the method of calculating the adequacy of compensation of openings in shells, using an area-replacement method. The method is based on determining and suitably replacing the missing metal area along any section, with metal available or provided, within the limits of reinforcement on the shell and nozzle. Clause UG-36 (b) of ASME Section VIII Division 1 provides limits on the size of the opening for applicability of Clauses UG-36 through UG-43. If these limits are exceeded, supplemental rules of Clause 1-7 of Appendix 1 need to be complied with or alternatively the rules of Clause 1-10 of Appendix 1 may be applied. The rules for large openings as stated in the Code are not dependent upon the absolute size of the nozzle and shell. For example, same calculations would be required to be carried out whether a nozzle of NPS 1 is attached to a shell of NPS 1.5 or a nozzle of NPS 16 is attached to a shell of NPS 24. The work presented in this paper is an attempt to determine whether the additional calculations in Clause 1-7 need to be carried out for finished openings exceeding the limits of UG-36(b) irrespective of the absolute size of the nozzle and shell. This has been done by carrying out calculations for a wide range of nozzle-shell combinations and comparing the results so obtained with the results of a Finite Element Analysis.


Author(s):  
Michael W. Guillot ◽  
Jack E. Helms

Finite element analysis is widely used to model the stresses resulting from penetrations in pressure vessels to accommodate components such as nozzles and man-ways. In many cases a reinforcing pad is required around the nozzle or other component to meet the design requirements of Section VIII, Division 1 or 2, of the ASME Pressure Vessel Code [1]. Several different finite element techniques are currently used for calculating the effects of reinforcing pads on the shell stresses resulting from penetrations for nozzles or man-ways. In this research the stresses near a typical reinforced nozzle on a pressure vessel shell are studied. Finite element analysis is used to model the stresses in the reinforcing pad and shell. The commercially available software package ANSYS is used for the modeling. Loadings on the nozzle are due to combinations of internal pressure and moments to simulate piping attachments. The finite element results are compared to an analysis per Welding Research Council Bulletin 107 [2].


Author(s):  
Dipak K. Chandiramani ◽  
Shyam Gopalakrishnan ◽  
Ameya Mathkar ◽  
Suresh K. Nawandar

Clause UG - 39 of ASME Section VIII Division 1 [1] provide rules for compensation of openings in flat stayed/ flat unstayed heads having fitted nozzles. The rules provided in Clause UG - 39 and its sub clauses apply to all openings other than small openings covered by UG - 36 (c)(3)(a) and provide rules for compensation of openings to those geometries which confirms to the geometric limitations specified therein. The rules provided in Clause UG - 39 of ASME Section VIII Division 1 are based on area replacement method. This method is also elaborated in WRC Bulletin 335 Aug 1988[4]. The conclusion of this bulletin is applicable to ASME Section VIII Div 1, ASME Section I, ASME B 31.1 and ASME Section III Class 2 and 3. This method requires that the metal cut out by an opening be replaced by reinforcement within a prescribed zone around the opening. This methodology is relatively simple and vast majority of the piping and pressure vessels with openings conforming to this methodology have given satisfactory service. In Code [1], as such there appears to be no restriction on the location of the nozzle opening, i.e., a header flat head pierced concentrically or eccentrically to locate the nozzle opening as long as the required area is obtained and the stresses are within allowable limits. While both these alternatives would be acceptable in Code [1] constructions, the actual stresses at the header flat heads/nozzle junction may vary considerably. The work reported in this paper was undertaken to make a comparative study on the effect of unstayed flat head pierced concentrically or eccentrically by using ASME Section VIII Division 1 and to study the stress pattern in both the cases using Finite Element Analysis (FEA) as a referral methodology.


Author(s):  
Trevor Seipp ◽  
Mark Stonehouse

Finite element analysis (FEA) is used, with increasing frequency, to supplement or justify the design of an ASME Section VIII, Division 1 or 2 pressure vessel. When this occurs, good engineering practice indicates that a competent engineer should review the finite element analysis report. In some jurisdictions, it is required that a Professional Engineer review and certify the report. This paper discusses some of the practical aspects of both writing and reviewing a good quality FEA report — both in the context of the technical perspective and in the context of Code compliance. This paper will serve as a practical assistant to an engineer reviewing an FEA report, as well as a guide to an engineer preparing an FEA report. Aspects such as properly following Code requirements, following appropriate Design By Analysis methodologies, and applying good design practices will be discussed.


Author(s):  
Gürkan İrsel

In this study, the total algorithm of the strength-based design of the system for mass production has been developed. The proposed algorithm, which includes numerical, analytical, and experimental studies, was implemented through a case study on the strength-based structural design and fatigue analysis of a tractor-mounted sunflower stalk cutting machine (SSCM). The proposed algorithm consists of a systematic engineering approach, material selection and testing, design of the mass criteria suitability, structural stress analysis, computer-aided engineering (CAE), prototype production, experimental validation studies, fatigue calculation based on an FE model and experimental studies (CAE-based fatigue analysis), and an optimization process aimed at minimum weight. Approximately 85% of the system was designed using standard commercially available cross-section beams and elements using the proposed algorithm. The prototype was produced, and an HBM data acquisition system was used to collect the strain gage output. The prototype produced was successful in terms of functionality. Two- and three-dimensional mixed models were used in the structural analysis solution. The structural stress analysis and experimental results with a strain gage were 94.48% compatible in this study. It was determined using nCode DesignLife software that fatigue damage did not occur in the system using the finite element analysis (FEA) and experimental data. The SSCM design adopted a multi-objective genetic algorithm (MOGA) methodology for optimization with ANSYS. With the optimization solved from 422 iterations, a maximum stress value of 57.65 MPa was determined, and a 97.72 kg material was saved compared to the prototype. This study provides a useful methodology for experimental and advanced CAE techniques, especially for further study on complex stress, strain, and fatigue analysis of new systematic designs desired to have an optimum weight to strength ratio.


Author(s):  
Justin Jones

Abstract Mooring chains may be installed with twist or become twisted during service. This paper describes an investigation of the effect of a range of twist angles on the fatigue life of studless chain through the use of detailed finite element analysis. The analysis includes the local contact patch deformation and residual stress state that results from plasticity during the proof testing of the chain. The effect of high in-service tension resulting from storms that produces additional plasticity when the chain is loaded in the twisted state is also included. The change in fatigue life at the crown, inner bend and around the contact patch are assessed. Local to the contact patch the fatigue life calculation includes an assessment of the multiaxial stress state. For small angles of twist the calculated fatigue life at the crown and around the contact increases and that at the inner bend sees a marginal reduction. At twist angles above 12 to 14 degrees per link the calculated inner bend and contact patch fatigue lives reduce markedly with increasing twist, but the crown fatigue life continues to increase.


2020 ◽  
Vol 8 (5) ◽  
pp. 358 ◽  
Author(s):  
Yusak Oktavianus ◽  
Massoud Sofi ◽  
Elisa Lumantarna ◽  
Gideon Kusuma ◽  
Colin Duffield

A precast reinforced concrete (RC) T-beam located in seaport Terminal Peti Kemas (TPS) Surabaya built in 1984 is used as a case study to test the accuracy of non-destructive test techniques against more traditional bridge evaluation tools. This bridge is mainly used to connect the berth in Lamong gulf and the port in Java Island for the logistic purposes. The bridge was retrofitted 26 years into its life by adding two strips of carbon fiber reinforced polymer (CFRP) due to excessive cracks observed in the beams. Non-destructive field measurements were compared against a detailed finite element analysis of the structure to predict the performance of the girder in terms of deflection and moment capacity before and after the retrofitting work. The analysis was also used to predict the long-term deflections of the structure due to creep, crack distribution, and the ultimate moment capacity of the individual girder. Moreover, the finite element analysis was used to predict the deflection behavior of the overall bridge due to vehicle loading. Good agreement was obtained between the field measurement and the analytical study. A new service life of the structure considering the corrosion and new vehicle demand is carried out based on field measurement using non-destructive testing. Not only are the specific results beneficial for the Indonesian port authority as the stakeholder to manage this structure, but the approach detailed also paves the way for more efficient evaluation of bridges more generally over their service life.


Author(s):  
Robbin Bertucci ◽  
Jun Liao ◽  
Lakiesha Williams

Explosions are the leading cause of death on the battlefield [1]. These explosives generate shock waves which stimulate large accelerations and deformations. The resulting loads pose serious threats to military and civilians. Since lower extremities are in direct contact with the ground, the lower extremities are commonly injured during explosions [2]. These injuries could be seriously fatal. Although experimental studies have been performed to advance these understandings [2], limited progress has been made in computational analysis of shock waves on the lower extremity.


2014 ◽  
Vol 598 ◽  
pp. 194-197
Author(s):  
Hong Jun Li ◽  
Qiang Ding ◽  
Xun Huang

Stress linearization is used to define constant and linear through-thickness FEA (Finite Element Analysis) stress distributions that are used in place of membrane and membrane plus bending stress distributions in pressure vessel Design by Analysis. In this paper, stress linearization procedures are reviewed with reference to the ASME Boiler & Pressure Vessel Code Section VIII Division 2 and EN13445. The basis of the linearization procedure is stated and a new method of stress linearization considering selected stress tensors for linearization is proposed.


Sign in / Sign up

Export Citation Format

Share Document