RPV Integrity Assessment: Comparison Between 3 Loops and 4 Loops Studies

Author(s):  
Georges Bezdikian ◽  
Dominique Moinereau ◽  
Claude Faidy

For the French utility (Electricite de France–EDF), Nuclear Energy represents 75% of generation of the total electric energy in France. Total nuclear electricity were generated mainly from Nuclear Power plants stations, 34 PWR NPPs 3-loop Reactors- 900 MWe, 20 PWR NPPs 4-loop Reactors- 1300 MWe and 4 PWR NPPs 4-loop Reactors- 1450 MWe. The 3-loop Reactor Pressure Vessel (RPV) integrity assessment, applied on 34 PWR NPPs Reactors, involved the verification of the integrity of the component under the most severe conditions of situation, and the result obtained was the justification of the 900 MWe RPV life management for at least 40 years and to prepare the projection beyond 40 years. Since 2000, in the continuity of these results, the studies were carried out on the 20 PWR NPPs 4-loop 1300 MWe Reactor Pressure Vessels, and the recent results obtained show the demonstration of the integrity of the RPV, in the most severe conditions of loading in relation with RTNDT (Reference Nil Ductility Transition Temperature), and other major parameters. This approach is based on specific mechanical safety studies on the RPV to demonstrate the absence of the risk of failure by brittle fracture. For these mechanical studies the major input data are necessary: 1 - the fluence distribution and the values of 3-loop and 4-loop RPV, 2 - RTNDT during the lifetime in operation, 3 - the temperature distribution values in the downcomer and the PTS evaluation. The main results must show significant margins against initiation of brittle fracture for all of 3-loop and 4-loop RPV. The flaws considered in this approach are shallow flaws beneath the cladding (subclad flaws) or in the first layer of cladding. The major tasks and expertises engaged by EDF are: • more precise assessment of the fluence calculations, • better knowledge of the vessel material properties, including the effect of radiation, • the NDE inspection program on the core zone. The comparison of the results are developed in this paper: • for the fluence evaluation and the optimisation of the fuel management, • the data gathered from radiation specimen capsules, removed from the vessels (radiation surveillance program), • and the thermal-hydraulic and mechanical calculations based on finite element thermal-hydraulic and 3D elastic-plastic mechanical computations.

Author(s):  
Georges Bezdikian ◽  
Franc¸oise Ternon-Morin ◽  
Henriette Churier-Bossennec ◽  
Dominique Moinereau ◽  
Alain Martin

The process used by the French utility, concerning the Reactor Pressure Vessel (RPV) integrity assessment, applied on 34 PWR NPPs 3-loop Reactors, involved the verification of the integrity of the component under the most severe conditions of situation, was engaged several years ago and the result obtained was the justification of the 900 MWe RPV life management for at least 40 years and to prepare the projection for beyond 40 years. Since 2000, in the continuity of this results, the studies was carried out on the 20 PWR NPPs 4-loop 1300 MWe Reactor Pressure Vessels, and the recent results obtained shows the demonstration of the integrity of the RPV, in the most severe conditions of loading in relation with RTNDT (Reference Nil Ductility Transition Temperature), and considering major parameters particularly the severity of the transient. This approach, is based on specific mechanical safety studies on the 1300 MWe RPV, to demonstrate the absence of risk of failure by brittle fracture. For these mechanical studies the major input data are necessary: 1 - the fluence distribution and the values of 4-loop RPV RTNDT during the lifetime in operation, 2 - the temperature distribution values in the downcomer and the PTS evaluation. The main results must show significant margins against initiation of the brittle fracture. The flaws considered in this approach are shallow flaws beneath the cladding (subclad flaws) or in the first layer of cladding. The major tasks and expertises engaged by EDF are: • better knowledge of the vessel material properties, including the effect of radiation, • more precise assessment of the fluence and neutronic calculations, • the NDE inspection program based on the inspection of the vessel wall, with a special NDE tool. The principal actions conducted during recent years are: • the optimisation of the fuel management and the new development for the fluence evaluation, • the data gathered from radiation specimen capsules, removed from the vessels (4loop reactor), within the framework of the radiation surveillance program, and the thermal-hydraulic-mechanical calculations based on finite element thermal-hydraulic computations and three dimensional elastic-plastic mechanical analyses.


Author(s):  
Pierre Dulieu ◽  
Valéry Lacroix

During the 2012 outage at Doel 3 and Tihange 2 Nuclear Power Plants, specific ultrasonic in-service inspections revealed a large number of quasi-laminar indications in the base metal of the reactor pressure vessels, mainly in the lower and upper core shells. The observed indications could subsequently be attributed to hydrogen flaking induced during the component manufacturing process. As a consequence, a Flaw Acceptability Assessment had to be performed as a part of the Safety Case demonstrating the fitness-for-service of these units. In that framework, detailed analyses using eXtended Finite Element Method were conducted to model the specific character of hydrogen flakes. Their quasi-laminar orientation as well as their high density required setting up 3D multi-flaws model accounting for flaw interaction. These calculations highlighted that even the most penalizing flaw configurations are harmless in terms of structural integrity despite the consideration of higher degradation of irradiated material toughness.


Author(s):  
M. Bie`th ◽  
R. Ahlstrand ◽  
C. Rieg ◽  
P. Trampus

The European Union’ TACIS programme was established for the New Independent States since 1991. One priority for TACIS funding is nuclear safety. The European Commission has made available a total of € 944 million for nuclear safety programmes covering the period 1991–2003. The TACIS nuclear safety programme is devoted to the improvement of the safety of Soviet designed nuclear installations in providing technology and safety culture transfer. The Joint Research Center (JRC) of the European Commission is carrying out works in the following areas: • On-Site Assistance for TACIS Nuclear Power Plants; • Design Safety and Dissemination of TACIS results; • Reactor Pressure Vessel Embrittlement for VVER in Russia and Ukraine; • Regulatory Assistance; • Industrial Waste Management and Nuclear Safeguards. This paper gives an overview of the Scientific and Technical support that JRC is providing for the programming and the implementation of the TACIS nuclear safety programmes. In particular, two new projects are being implemented to get an extensive understanding of the VVER reactor pressure vessel embritttlement and integrity assessment.


Author(s):  
Christian Swacek ◽  
Patrick Gauder ◽  
Michael Seidenfuss

Abstract In 2012 non-destructive testing measurements (NDT) of the reactor pressure vessels (RPV) in the Belgian Nuclear Power Plants Doel 3 and Tihange 2 revealed a high quantity of indications in the upper and lower core shells. The most likely explanation is that the measured indications are hydrogen flakes positioned in segregated zones in the base material of the pressure vessels. These hydrogen flakes have a laminar and quasi-laminar orientation with an inclination up to 15° to the pressure retaining surface. Under internal pressure, the crack tips undergo predominantly mixed mode loading conditions, where the induced stress and strain fields of the single crack tips influence each other. The safety assessment of crack afflicted pressurized components is performed by fracture mechanical approaches. For the evaluation of multiple cracks in crack fields, state of the art codes and standards apply interaction criteria and grouping methods, to determine a representative crack, which has to be evaluated. In this paper, the interaction of cracks in crack fields is numerically and experimentally evaluated. Damage mechanical models based on the Rousselier- and the Beremin model are used to investigate numerically the interaction of cracks in crack fields. Experimental data from ferritic flat tensile specimens afflicted with cracks are used to verify the numerical results. The damage mechanical calculations reveal critical crack arrangements due to coalescence behavior and cleavage fracture probability. These results and ongoing research intends the derivation of interaction criteria for cracks in crack fields. The interaction criteria will be used for the definition of a representative flaw for a conservative integrity assessment of crack afflicted components.


Author(s):  
Romain Beaufils ◽  
Eric Meister ◽  
Emmanuel Ardillon

This work deals with the possibility of the life extension of nuclear power plants in France. The aim is to justify the resistance of the pressure vessel, which is non-replaceable. The brittle fracture deterministic integrity assessment of the nuclear Reactor Pressure Vessel (RPV) is based on the analysis of a flaw under the austenitic cladding of the RPV. The demonstration of the RPV resistance is controlled by the regulations. It is proposed here to use a probabilistic method by propagating uncertainties into the deterministic mechanical model in order to quantify conservatism of the deterministic method. The regulatory requirements must be respected and the purpose of the work presented here is thus to link the probabilistic result to the deterministic method.


Author(s):  
Milan Brumovsky

Reactor pressure vessels are components that usually determine the lifetime of the whole nuclear power plant and thus also its efficiency and economy. There are several ways how to ensure conditions for reactor pressure vessel lifetime extension, mainly: - pre-operational, like: • optimal design of the vessel; • proper choice of vessel materials and manufacturing technology; - operational, like: • application of low-leakage core; • increase of water temperature in ECCS; • insertion of dummy elements; • vessel annealing; • decrease of conservatism during reactor pressure vessel integrity assessment e.g. using direct use of fracture mechanics parameters, like “Master Curve” approach. All these ways are discussed in the paper and some qualitative as well as quantitative evaluation is given.


Author(s):  
Adolfo Arrieta-Ruiz ◽  
Eric Meister ◽  
Henriette Churier

Structural integrity of the Reactor Pressure Vessel (RPV) is one of the main considerations regarding safety and lifetime of Nuclear Power Plants (NPP) since this component is considered as not reasonably replaceable. Brittle fracture risk associated with the embrittlement of RPV steel in irradiated areas is the main potential damage. In France, deterministic integrity assessment for RPV is based on the crack initiation stage. The stability of an under-clad postulated flaw in the core area is currently evaluated under a Pressurized Thermal Shock (PTS) through a fracture mechanics simplified method. One of the axes of EDF’s implemented strategy for NPP lifetime extension is the improvement of the deterministic approach with regards to the input data and methods so as to reduce conservatisms. In this context, 3D finite element elastic-plastic calculations with flaw modelling have been carried out recently in order to quantify the enhancement provided by a more realistic approach in the most severe events. The aim of this paper is to present both simplified and 3D modelling flaw stability evaluation methods and the results obtained by running a small break LOCA event.


Author(s):  
Hiroshi Matsuzawa

There are 53 (fifty-three) nuclear power plants (both PWR and BWR type) are now under operating in Japan, and the oldest plant has been operating more than thirty years. These plants will be operated until sixty years for operation periods, and will be verified the integrity for assessment of nuclear plants for every ten years in Japan. Reactor Pressure Vessels (RPVs) are required to evaluate the reduction of fracture toughness and the increase of the reference temperature in the transition region. As the operating period will be longer, the prediction for these material properties will be more important. Recently the domestic prediction formula of embrittlement was revised based on the database of domestic plant surveillance test results for thirty years olds as the JEAC4201-2007 [7]. The adequacy for this prediction formula using for sixty year periods is verified by use of the results of the material test reactors (MTRs), but the effects of the accelerated irradiation on embrittlement has not been clear now. So, JNES started the national project, called as “PRE” project on 2005 in order to investigate how flux influences on the ΔRTNDT. In this project the RPV materials irradiated in the actual PWR plant have been re-irradiated in the OECD/Halden test reactor by several different fluxes up to the high fluence region, and the microstructual change for these materials will be investigated in order to make clear the cause of the irradiation embrittlement. In this paper the overall scheme of this project and the summary of the updated results will be presented.


Sign in / Sign up

Export Citation Format

Share Document