Evaluation of the Crack Interaction and Failure Behavior of Components With Crack Fields Using a Damage Mechanical Approach

Author(s):  
Christian Swacek ◽  
Patrick Gauder ◽  
Michael Seidenfuss

Abstract In 2012 non-destructive testing measurements (NDT) of the reactor pressure vessels (RPV) in the Belgian Nuclear Power Plants Doel 3 and Tihange 2 revealed a high quantity of indications in the upper and lower core shells. The most likely explanation is that the measured indications are hydrogen flakes positioned in segregated zones in the base material of the pressure vessels. These hydrogen flakes have a laminar and quasi-laminar orientation with an inclination up to 15° to the pressure retaining surface. Under internal pressure, the crack tips undergo predominantly mixed mode loading conditions, where the induced stress and strain fields of the single crack tips influence each other. The safety assessment of crack afflicted pressurized components is performed by fracture mechanical approaches. For the evaluation of multiple cracks in crack fields, state of the art codes and standards apply interaction criteria and grouping methods, to determine a representative crack, which has to be evaluated. In this paper, the interaction of cracks in crack fields is numerically and experimentally evaluated. Damage mechanical models based on the Rousselier- and the Beremin model are used to investigate numerically the interaction of cracks in crack fields. Experimental data from ferritic flat tensile specimens afflicted with cracks are used to verify the numerical results. The damage mechanical calculations reveal critical crack arrangements due to coalescence behavior and cleavage fracture probability. These results and ongoing research intends the derivation of interaction criteria for cracks in crack fields. The interaction criteria will be used for the definition of a representative flaw for a conservative integrity assessment of crack afflicted components.

Author(s):  
Christian Swacek ◽  
Xaver Schuler ◽  
Michael Seidenfuss

Non-destructive testing measurements in the Belgian nuclear power plants Doel 3 and Tihange 2 revealed a high quantity of indications in the upper and lower core shells of the reactor pressure vessels. The most likely explanation is that the indications are hydrogen flakes positioned in segregated zones of the base material of the pressure vessel. These hydrogen flakes have a laminar and quasi-laminar orientation to the pressure retaining surface. Under mechanical loading the crack tips undergo predominantly mixed mode loading conditions, where the induced stress and strain fields of the single crack tips influence each other. Due to these specific loading conditions, the assumptions for classical standardized fracture mechanical methods are not met. Currently, there is no verified concept for the evaluation of such kind of crack fields. Therefore the mechanical behavior of components with laminar crack fields and the interaction of cracks in such crack fields are investigated in an ongoing research project. Relevant parameters to describe crack fields in terms of crack size, crack location and crack orientation are derived from literature and own nondestructive measurements. Damage mechanical approaches are used in finite element calculations to investigate the interaction of cracks. Advanced damage mechanical models will be used to investigate crack initiation, crack growth and coalescence of cracks in crack fields. According to the results, representative parameters for crack fields will be derived and critical crack formations determined. The results will be evaluated and compared with state of the art approaches and standards.


Author(s):  
Pierre Dulieu ◽  
Valéry Lacroix

During the 2012 outage at Doel 3 and Tihange 2 Nuclear Power Plants, specific ultrasonic in-service inspections revealed a large number of quasi-laminar indications in the base metal of the reactor pressure vessels, mainly in the lower and upper core shells. The observed indications could subsequently be attributed to hydrogen flaking induced during the component manufacturing process. As a consequence, a Flaw Acceptability Assessment had to be performed as a part of the Safety Case demonstrating the fitness-for-service of these units. In that framework, detailed analyses using eXtended Finite Element Method were conducted to model the specific character of hydrogen flakes. Their quasi-laminar orientation as well as their high density required setting up 3D multi-flaws model accounting for flaw interaction. These calculations highlighted that even the most penalizing flaw configurations are harmless in terms of structural integrity despite the consideration of higher degradation of irradiated material toughness.


Author(s):  
Patrick Gauder ◽  
Xaver Schuler ◽  
Michael Seidenfuss

During the 2012 outage of the Belgian nuclear power plants (NPP) Doel 3 and Tihange 2 non-destructive testing (NDT) measurements revealed a high quantity of indications in the upper and lower core shells of the reactor pressure vessels (RPV). A root cause analysis leads to the most likely hypothesis that the indications are hydrogen flakes in segregated zones of the RPV ferritic base material. The laminar and quasi-laminar orientation (0° – 15° inclination to the pressure retaining surface) of the hydrogen flakes, the interaction of several adjacent flakes and the mechanical loading conditions lead to a mixed-mode behavior at the crack tips. In the framework of an ongoing research project, experimental and numerical investigations are conducted with the aim to describe the failure behavior of such complex crack configurations. The experiments are carried out using two ferritic materials. One is a non-irradiated representative RPV steel (SA 508 Class 2) and the second material is a special lower bound melt of a modified 22NiMoCr3-7 steel (FKS test melt KS 07 C) containing hydrogen flakes. A material characterization is done for both materials including tensile specimens, notched round bars, shear-, torsion- and compact-tension-shear (CTS) - specimens to investigate different stress states. Furthermore, flat tensile specimens with eroded artificial crack fields are used to investigate the interaction between the cracks in different arranged crack fields. Numerical simulations are carried out with extended micromechanical based damage mechanics models. For the description of ductile failure an enhanced Rousselier model is used and an enhanced Beremin model to calculate the probability of cleavage fracture. To account the sensitivity for low stress triaxiality damage by shear loading, the Rousselier model was enhanced with a term to account for damage evolution by shear. The Beremin model will be enhanced with a term to account for different levels of triaxiality. For the numerical simulations in the transition region of ductile-to-brittle failure a coupled damage mechanics model (enhanced Rousselier and Beremin) will be used. In this paper, the current status of the ongoing research project and first results are presented.


Author(s):  
Georges Bezdikian ◽  
Dominique Moinereau ◽  
Claude Faidy

For the French utility (Electricite de France–EDF), Nuclear Energy represents 75% of generation of the total electric energy in France. Total nuclear electricity were generated mainly from Nuclear Power plants stations, 34 PWR NPPs 3-loop Reactors- 900 MWe, 20 PWR NPPs 4-loop Reactors- 1300 MWe and 4 PWR NPPs 4-loop Reactors- 1450 MWe. The 3-loop Reactor Pressure Vessel (RPV) integrity assessment, applied on 34 PWR NPPs Reactors, involved the verification of the integrity of the component under the most severe conditions of situation, and the result obtained was the justification of the 900 MWe RPV life management for at least 40 years and to prepare the projection beyond 40 years. Since 2000, in the continuity of these results, the studies were carried out on the 20 PWR NPPs 4-loop 1300 MWe Reactor Pressure Vessels, and the recent results obtained show the demonstration of the integrity of the RPV, in the most severe conditions of loading in relation with RTNDT (Reference Nil Ductility Transition Temperature), and other major parameters. This approach is based on specific mechanical safety studies on the RPV to demonstrate the absence of the risk of failure by brittle fracture. For these mechanical studies the major input data are necessary: 1 - the fluence distribution and the values of 3-loop and 4-loop RPV, 2 - RTNDT during the lifetime in operation, 3 - the temperature distribution values in the downcomer and the PTS evaluation. The main results must show significant margins against initiation of brittle fracture for all of 3-loop and 4-loop RPV. The flaws considered in this approach are shallow flaws beneath the cladding (subclad flaws) or in the first layer of cladding. The major tasks and expertises engaged by EDF are: • more precise assessment of the fluence calculations, • better knowledge of the vessel material properties, including the effect of radiation, • the NDE inspection program on the core zone. The comparison of the results are developed in this paper: • for the fluence evaluation and the optimisation of the fuel management, • the data gathered from radiation specimen capsules, removed from the vessels (radiation surveillance program), • and the thermal-hydraulic and mechanical calculations based on finite element thermal-hydraulic and 3D elastic-plastic mechanical computations.


Author(s):  
Valéry Lacroix ◽  
Pierre Dulieu

During the 2012 outages at Doel 3 and Tihange 2 Nuclear Power Plants, a large number of quasi-laminar indications were detected, mainly in the lower and upper core shells of the Reactor Pressure Vessels (RPVs). The observed indications could subsequently be attributed to hydrogen flaking induced during the component manufacturing process. As a consequence, both units remained core unloaded pending the elaboration of an extensive Safety Case demonstrating that they can be safely operated. The Structural Integrity Assessment of the RPVs, through the Flaw Acceptability Assessment, aimed at demonstrating that the identified indications do not jeopardize the integrity of the reactor vessel in all operating modes, transients and accident conditions. This demonstration has been done on the basis of a specific methodology inspired by the ASME B&PV Code Section XI procedure but adapted to the nature and the number of indications found in the Doel 3 and Tihange 2 RPVs. As requested by Article IWB-3610(a) of ASME B&PV Code Section XI, one of the parts that have to be addressed through the Flaw Acceptability Assessment is the Fatigue Crack Growth (FCG) Analysis of the flaws in the core shells until the end-of-service lifetime of the RPVs. Due to the large number of flaws in the core shells, a specific methodology has been developed in order not to perform the FCG Analysis of each flaw separately. The paper describes this simplified approach aiming at distributing the flaws according to their inclination and at defining envelope flaws covering the actual flaws to carry out FCG Analysis. Furthermore, the paper highlights and quantifies the conservatisms of this analysis leading finally to demonstrate that the FCG of hydrogen flakes is not a concern in Doel 3 and Tihange 2 RPVs.


Author(s):  
Valéry Lacroix ◽  
Pierre Dulieu

During the 2012 outage at Doel 3 and Tihange 2 Nuclear Power Plants, a large number of quasi-laminar indications were detected in the reactor pressure vessels, mainly in the lower and upper core shells. The observed indications could subsequently be attributed to hydrogen flaking induced during the component manufacturing process. As a consequence, both units remained core unloaded pending the elaboration of an extensive Safety Case demonstrating that they can be safely operated. The Structural Integrity Assessment of the RPVs, through the Flaw Acceptability Analysis, aimed at demonstrating that the identified indications do not jeopardize the integrity of the reactor vessel in all operating modes, transients and accident conditions. This demonstration, presented in this paper, has been done on the basis of a specific innovative methodology inspired by the ASME XI procedure but adapted to the nature and number of indications found in the Doel 3 and Tihange 2 RPVs.


2021 ◽  
Vol 9 ◽  
Author(s):  
Pan Liu ◽  
Yuebing Li ◽  
Ting Jin ◽  
Dasheng Wang

Nuclear power can be used for power generation, space heating, and other fields, producing a limited level of greenhouse gases and no atmospheric pollutants. However, the safety of nuclear reactors is always a public concern. The reactor pressure vessels (RPVs) play an important role in the safe operation of a nuclear power plant. When a defect is inspected in the RPV, complex analytical evaluation procedures, including fatigue analysis and fracture assessment, are necessary to ensure the structural integrity of the defective component. Based on the RSE-M, a quick evaluation approach for RPVs with defects exceeding acceptance standards is proposed in this work to reduce the computational complexity and analysis time. The flaw evaluation is simplified by adjusting the inspection period based on the analysis of fatigue crack growth. The new method was applied to the RPVs with embedded defects and underclad semi-elliptical defects, respectively. The proposed evaluation approach was verified by the case of a typical RPV cylinder containing an embedded crack, where all possible transients during the operation of nuclear power plants are considered. During the allowable residual life obtained of 5-years, failure would not occur in the defective component via the conventional method, which gives confidence to the availability of the new approach. Consequently, the proposed method can be a valid reference for the structural integrity assessment of nuclear reactor components with defects exceeding acceptance standards.


Author(s):  
Pierre Dulieu ◽  
Valéry Lacroix

During the 2012 outage at Doel 3 and Tihange 2 Nuclear Power Plants, a large number of quasi-laminar indications were detected, mainly in the lower and upper core shells of the Reactor Pressure Vessels (RPVs). The observed indications could subsequently be attributed to hydrogen flaking induced during the component manufacturing process. As a consequence, both units remained core unloaded pending the elaboration of an extensive evaluation demonstrating that they can be safely operated. The Structural Integrity Assessment of the RPVs, through the Flaw Acceptability Assessment, aimed at demonstrating that the identified indications do not jeopardize the integrity of the reactor vessel in all operating modes, transients and accident conditions. This demonstration has been done on the basis of a specific methodology inspired by the ASME B&PV Code Section XI procedure but adapted to the nature and the number of indications found in the Doel 3 and Tihange 2 RPVs. As requested by Article IWB-3610(d)(2) of ASME B&PV Code Section XI, one of the parts that have to be addressed through the Flaw Acceptability Assessment is the Primary Stress Re-Evaluation assuming local area reductions of the pressure retaining membrane i.e., of the core shells, due to presence of the flaws. This is performed using the limit analysis provided by Article NB-3228.1 of the ASME B&PV Code Section III. Results are compared to those using the plastic analysis of Article NB-3228.3. The acceptance criterion that needs to be verified is that the calculated collapse pressure should be more than 1.5 times the design pressure. The paper presents the 2D conservative approach developed in order to carry out this analysis dealing with large number and high density of flaws. Furthermore, the paper validates this 2D conservative methodology through detailed 3D XFEM elastic-plastic calculations.


2016 ◽  
Vol 7 (2) ◽  
pp. 42-49
Author(s):  
Nick Shykinov ◽  
Robert Rulko ◽  
Dariusz Mroz

Abstract In the context of energy demands by growing economies, climate changes, fossil fuel pricing volatility, and improved safety and performance of nuclear power plants, many countries express interest in expanding or acquiring nuclear power capacity. In the light of the increased interest in expanding nuclear power the supply chain for nuclear power projects has received more attention in recent years. The importance of the advanced planning of procurement and manufacturing of components of nuclear facilities is critical for these projects. Many of these components are often referred to as long-lead items. They may be equipment, products and systems that are identified to have a delivery time long enough to affect directly the overall timing of a project. In order to avoid negatively affecting the project schedule, these items may need to be sourced out or manufactured years before the beginning of the project. For nuclear facilities, long-lead items include physical components such as large pressure vessels, instrumentation and controls. They may also mean programs and management systems important to the safety of the facility. Authorized nuclear operator training, site evaluation programs, and procurement are some of the examples. The nuclear power industry must often meet very demanding construction and commissioning timelines, and proper advanced planning of the long-lead items helps manage risks to project completion time. For nuclear components there are regulatory and licensing considerations that need to be considered. A national nuclear regulator must be involved early to ensure the components will meet the national legal regulatory requirements. This paper will discuss timing considerations to address the regulatory compliance of nuclear long-lead items.


Author(s):  
M. Bie`th ◽  
R. Ahlstrand ◽  
C. Rieg ◽  
P. Trampus

The European Union’ TACIS programme was established for the New Independent States since 1991. One priority for TACIS funding is nuclear safety. The European Commission has made available a total of € 944 million for nuclear safety programmes covering the period 1991–2003. The TACIS nuclear safety programme is devoted to the improvement of the safety of Soviet designed nuclear installations in providing technology and safety culture transfer. The Joint Research Center (JRC) of the European Commission is carrying out works in the following areas: • On-Site Assistance for TACIS Nuclear Power Plants; • Design Safety and Dissemination of TACIS results; • Reactor Pressure Vessel Embrittlement for VVER in Russia and Ukraine; • Regulatory Assistance; • Industrial Waste Management and Nuclear Safeguards. This paper gives an overview of the Scientific and Technical support that JRC is providing for the programming and the implementation of the TACIS nuclear safety programmes. In particular, two new projects are being implemented to get an extensive understanding of the VVER reactor pressure vessel embritttlement and integrity assessment.


Sign in / Sign up

Export Citation Format

Share Document