Analysis of a Soft Catch for Conventional Warheads

Author(s):  
Matthew Pope ◽  
Bradley Martin ◽  
David Lambert ◽  
Stanley E. Jones ◽  
Jonathan Muse

A “soft catch” is a device with which an explosively formed projectile can be decelerated to zero velocity without sustaining significant damage. The recovered projectile provides data, via metallurgical analysis, on the deformation conditions found within the explosively formed projectile. At Eglin AFB, FL, the soft catch consists of a sequence of sections (Figures 1–3), each roughly one meter long, filled with various soft media. Velocity screens are placed at the entrance and exit of each section. This enables investigators to experimentally determine the time at which the projectile passes each station in the catch. Based on these experimental measurements, average velocity estimates for each section of the soft catch can be made. The purpose of this paper is to support the soft catch design process with a one-dimensional analysis. The mathematical modeling is based on observations presented in studies by Allen, Mayfield, and Morrison [1,2]. Their work addresses the penetration of sand, but their modeling is appropriate for materials in the soft catch. The current paper describes application of their model to interpreting three soft catch experiments where Tantalum projectiles with initial velocities of approximately 1400 m/s were successfully recovered.

2019 ◽  
pp. 152808371986693 ◽  
Author(s):  
Changchun Ji ◽  
Yudong Wang ◽  
Yafeng Sun

In order to decrease the fiber diameter and reduce the energy consumption in the melt-blowing process, a new slot die with internal stabilizers was designed. Using computational fluid dynamics technology, the new slot die was investigated. In the numerical simulation, the calculation data were validated with the laboratory measurement data. This work shows that the new slot die could increase the average velocity on the centerline of the air-flow field by 6.9%, compared with the common slot die. Simultaneously, the new slot die could decrease the back-flow velocity and the rate of temperature decay in the region close to the die head. The new slot die could reduce the peak value of the turbulent kinetic energy and make the fiber movements more gradual. With the one-dimensional drawing model, it proves that the new slot die has more edge on the decrease of fiber diameter than the common slot die.


2015 ◽  
Vol 117 ◽  
pp. 130-141 ◽  
Author(s):  
Ya-jun Wang ◽  
Jiang Li ◽  
Fei Qin ◽  
Guo-qiang He ◽  
Lei Shi

1984 ◽  
Vol 21 (4) ◽  
pp. 415-416
Author(s):  
Meziane Harhad ◽  
Robert W. Courter

Author(s):  
O. Adamidis ◽  
G. S. P. Madabhushi

Loosely packed sand that is saturated with water can liquefy during an earthquake, potentially causing significant damage. Once the shaking is over, the excess pore water pressures that developed during the earthquake gradually dissipate, while the surface of the soil settles, in a process called post-liquefaction reconsolidation. When examining reconsolidation, the soil is typically divided in liquefied and solidified parts, which are modelled separately. The aim of this paper is to show that this fragmentation is not necessary. By assuming that the hydraulic conductivity and the one-dimensional stiffness of liquefied sand have real, positive values, the equation of consolidation can be numerically solved throughout a reconsolidating layer. Predictions made in this manner show good agreement with geotechnical centrifuge experiments. It is shown that the variation of one-dimensional stiffness with effective stress and void ratio is the most crucial parameter in accurately capturing reconsolidation.


1968 ◽  
Vol 90 (4) ◽  
pp. 547-552 ◽  
Author(s):  
E. K. Levy

A one-dimensional analysis of a compressible vapor flowing within the evaporator section of a heat pipe is presented. Comparisons between the theoretical results and existing heat pipe data show that the presence of gasdynamic choking can limit the heat transfer capacity of a heat pipe operating at sufficiently low vapor pressures.


Sign in / Sign up

Export Citation Format

Share Document