The Role of Displacement-Controlled Stresses in Critical Flaw Size Determination for Piping Systems

Author(s):  
Peter C. Riccardella ◽  
Paul Hirschberg ◽  
Ted Anderson ◽  
Greg Thorwald ◽  
Eric Scheibler

A debate has long ensued in ASME Subcommittee XI regarding the need to include displacement-controlled (secondary) stresses in critical flaw size calculations for austenitic weldments. There is general agreement that inclusion of secondary stresses is not necessary for highly ductile piping materials such as wrought stainless steel and high nickel alloys. However, some stainless steel weldments are classified as “low-toughness” because, although not considered brittle, they exhibit lower toughness than wrought stainless steel. The Code requires the inclusion of global secondary stresses, such as piping thermal expansion loads, in critical flaw size calculations for such weldments, albeit at reduced safety factors. The Code requirements are less clear for dissimilar metal weldments, such as Alloy 82/182, which were often used for ferritic nozzle to safe-end welds in nuclear power plants, and which have proven in service to be susceptible to a form of stress corrosion cracking. Analyses are presented in this paper that shed additional light on the subject. Finite element analyses (FEA) of a straight pipe with a through-thickness crack were used to determine the effect on bending moment and crack driving force due to an imposed end rotation. Moment and J-integral knock-down factors are computed for a range of crack sizes for two different pipe lengths. Piping analyses are also presented for two typical PWR surge lines, which are among the highest secondary stress locations in U.S. nuclear plants. These analyses predict the maximum rotation at the surge nozzle that could be produced by the secondary loads (anchor movement + thermal expansion + stratification), and compare that to rotations that were sustained in full scale pipe tests containing large complex cracks. The analyses demonstrate that secondary loads would be substantially reduced prior to fracture of a cracked weldment, and that they are therefore of reduced significance in critical flaw size calculations. A general method for estimating the effect of secondary loads on pipe fracture as a function of relative piping system and crack section stiffness is suggested.

Author(s):  
Bruce A. Young ◽  
Sang-Min Lee ◽  
Paul M. Scott

As a means of demonstrating compliance with the United States Code of Federal Regulations 10CFR50 Appendix A, General Design Criterion 4 (GDC-4) requirement that primary piping systems for nuclear power plants exhibit an extremely low probability of rupture, probabilistic fracture mechanics (PFM) software has become increasingly popular. One of these PFM codes for nuclear piping is Pro-LOCA which has been under development over the last decade. Currently, Pro-LOCA is being enhanced under an international cooperative program entitled PARTRIDGE-II (Probabilistic Analysis as a Regulatory Tool for Risk-Informed Decision GuidancE - Phase II). This paper focuses on the use of a pre-defined set of base-case inputs along with prescribed variation in some of those inputs to determine a comparative set of sensitivity analyses results. The benchmarking case was a circumferential Primary Water Stress Corrosion Crack (PWSCC) in a typical PWR primary piping system. The effects of normal operating loads, temperature, leak detection, inspection frequency and quality, and mitigation strategies on the rupture probability were studied. The results of this study will be compared to the results of other PFM codes using the same base-case and variations in inputs. This study was conducted using Pro-LOCA version 4.1.9.


Author(s):  
Se´bastien Caillaud ◽  
Rene´-Jean Gibert ◽  
Pierre Moussou ◽  
Joe¨l Cohen ◽  
Fabien Millet

A piping system of French nuclear power plants displays large amplitude vibrations in particular flow regimes. These troubles are attributed to cavitation generated by single-hole orifices in depressurized flow regimes. Real scale experiments on high pressure test rigs and on-site tests are then conducted to explain the observed phenomenon and to find a solution to reduce pipe vibrations. The first objective of the present paper is to analyze cavitation-induced vibrations in the single-hole orifice. It is then shown that the orifice operates in choked flow with supercavitation, which is characterized by a large unstable vapor pocket. One way to reduce pipe vibrations consists in suppressing the orifices and in modifying the control valves. Three technologies involving a standard trim and anti-cavitation trims are tested. The second objective of the paper is to analyze cavitation-induced vibrations in globe-style valves. Cavitating valves operate in choked flow as the orifice. Nevertheless, no vapor pocket appears inside the pipe and no unstable phenomenon is observed. The comparison with an anti-cavitation solution shows that cavitation reduction has no impact on low frequency excitation. The effect of cavitation reduction on pipe vibrations, which involve essentially low frequencies, is then limited and the first solution, which is the standard globe-style valve installed on-site, leads to acceptable pipe vibrations. Finally, this case study may have consequences on the design of piping systems. First, cavitation in orifices must be limited. Choked flow in orifices may lead to supercavitation, which is here a damaging and unstable phenomenon. The second conclusion is that the reduction of cavitation in globe-style valve in choked flow does not reduce pipe vibrations. The issue is then to limit cavitation erosion of valve trims.


Author(s):  
Kei Kobayashi ◽  
Takashi Satoh ◽  
Nobuyuki Kojima ◽  
Kiyoshi Hattori ◽  
Masaki Nakagawa ◽  
...  

The present design damping constants for nuclear power plant (NPP)’s piping system in Japan were developed through discussion among expert researchers, electric utilities and power plant manufactures. They are standardized in “Technical guidelines for seismic design of Nuclear Power Plants” (JEAG 4601-1991 Supplemental Edition). But some of the damping constants are too conservative because of a lack of experimental data. To improve this excessive conservatism, piping systems supported by U-bolts were chosen and U-bolt support element test and piping model excitation test were performed to obtain proper damping constants. The damping mechanism consists of damping due to piping materials, damping due to fluid interaction, damping due to plastic deformation of piping and supports, and damping due to friction and collision between piping and supports. Because the damping due to friction and collision was considered to be dominant, we focused our effort on formulating these phenomena by a physical model. The validity of damping estimation method was confirmed by comparing data that was obtained from the elemental tests and the actual scale piping model test. New design damping constants were decided from the damping estimations for piping systems in an actual plant. From now on, we will use the new design damping constants for U-bolt support piping systems, which were proposed from this study, as a standard in the Japanese piping seismic design.


Author(s):  
Yukio Takahashi ◽  
Yoshihiko Tanaka

It is essential to predict the behavior of nuclear piping system under seismic loading to evaluate the structural integrity of nuclear power plants. Relatively large stress cycles may be applied to the piping systems under severe seismic loading and plastic deformation may occur cyclically in some portion of the systems. Accurate description of inelastic deformation under cyclic loading is indispensable for the precise estimation of strain cycles and accumulation potentially leading to the failure due to fatigue-ratcheting interaction. Elastic-plastic constitutive models based on the nonlinear kinematic hardening rule proposed by Ohno and Wang were developed for type 316 austenitic stainless steel and carbon steel JIS STPT410 (similar to ASTM A106 Gr.B), both of which are used in piping systems in nuclear power plants. Different deformation characteristics under cyclic loading in terms of memory of prior hardening were observed on these two materials and they were reflected in the modeling. Results of simulations under various loading conditions were compared with the test data to demonstrate the high capability of the constitutive models.


Author(s):  
Yinsheng Li ◽  
Kunio Hasegawa ◽  
Michiya Sakai ◽  
Shinichi Matsuura ◽  
Naoki Miura

When a crack is detected in a nuclear piping system during in-service inspections, the failure estimation method provided in codes such as the ASME Boiler and Pressure Vessel Code Section XI or JSME Rules on Fitness-for-Service for Nuclear Power Plants can be applied to evaluate the structural integrity of the cracked pipe. In the current codes, the failure estimation method for circumferentially cracked pipes includes bending moment and axial force due to pressure. Torsion moment is not considered. The Working Group on Pipe Flaw Evaluation for the ASME Boiler and Pressure Vessel Code Section XI is developing guidance for combining torsion load within the existing solutions provided in Appendix C for bending and pressure loadings on a pipe. A failure estimation method for circumferentially cracked pipes subjected to general loading conditions including bending moment, internal pressure and torsion moment with general magnitude has been proposed based on analytical investigations on the limit load for cracked pipes. In this study, experimental investigation was conducted to confirm the applicability of the proposed failure estimation method. Experiments were carried out on 8-inch diameter Schedule 80 stainless steel pipes containing a circumferential surface crack. Based on the experimental results, the proposed failure estimation method was confirmed to be applicable to cracked pipes subjected to combined bending and torsion moments.


Author(s):  
R. Adibi-Asl

Piping systems in process industries and nuclear power plants include straight pipe runs and various fittings such as elbows, miter bends etc. Elbows and bends in piping systems provide additional flexibility to the piping system along with performing the primary function of changing the direction of fluid flow. Distinctive geometry of these toroidal shell components result in a structural behavior different from straight pipe. Hence, it would be useful to predict the behavior of these components with acceptable accuracy for design purposes. Analytical expressions are derived for stresses set up during loading and unloading in a toroidal shell subjected to internal pressure. Residual stresses in the component are also evaluated. The proposed solutions are then compared with three-dimensional finite element analysis at different locations including intrados, extrados and flanks.


Author(s):  
Yinsheng Li ◽  
Kunio Hasegawa ◽  
Naoki Miura ◽  
Katsuaki Hoshino

When a crack is detected in a stainless steel pipe during in-service inspections, the failure estimation method given in codes such as the ASME Boiler and Pressure Vessel Code Section XI or JSME Rules on Fitness-for-Service for Nuclear Power Plants can be applied to evaluate the structural integrity of the cracked pipe. In the current codes, the failure estimation method includes the bending moment and axial force due to pressure. The torsion moment is assumed to be relatively small and is not considered. Recently, analytical investigations considering multi-axial loads including torsion were conducted in several previous studies by examining the limit load for pipes with a circumferential crack. A failure estimation method for the combined bending moment, torsion moment and internal pressure was proposed. In this study, the failure behavior of pipes with a circumferential crack subjected to multi-axial loads including the torsion is investigated to provide experimental support for the failure estimation method. Experiments were carried out on small size stainless steel cylinders containing a circumferential surface or through-wall crack, subjected to the combined tensile and torsion loads. Based on the experimental results, the proposed failure estimation method was confirmed to be applicable to cracked pipes subjected to combined tensile and torsion loads.


Author(s):  
Yinsheng Li ◽  
Kunio Hasegawa ◽  
Kunio Onizawa ◽  
Masayoshi Shimomoto

When a flaw is detected in a stainless steel piping system of a nuclear power plant during in-service inspection, the fracture estimation method provided in the codes such as the ASME Code Section XI or the JSME S NA-1-2004 can be applied to evaluate the integrity of the pipe. However, in these current codes, the fracture estimation method is only provided for the pipe containing a single flaw, although independent multiple flaws such as stress corrosion cracks have actually been detected in the same circumference of stainless steel piping systems. In this paper, a fracture estimation method is proposed by formula for multiple independent circumferential flaws with any number and arbitrary distribution in the same circumference of the pipe. Using the proposed method, the numerical solutions are compared with the experimental results to verify its validity, and several numerical examples are provided to show its effectiveness.


Author(s):  
Yinsheng Li ◽  
Kunio Hasegawa ◽  
Naoki Miura ◽  
Katsuaki Hoshino

When a crack is detected in a stainless steel pipe during in-service inspections, the failure estimation method given in the codes such as ASME Boiler and Pressure Vessel Code Section XI or JSME Rules on Fitness-for-Service for Nuclear Power Plants can be applied to evaluate the integrity of the cracked pipe. In the current codes, the failure estimation method considers the bending moment and axial force due to pressure. The torsion moment is assumed to be relatively small and is not considered in the method. Recently, an analytical investigation has been carried out by several of our authors on the limit load considering multi-axial loads including torsion, and a failure estimation method for combined bending moment, torsion moment and internal pressure is proposed. In this study, to investigate the failure behavior of cracked pipes subjected to multi-axial loads, including the torsion, and to provide experimental support for the failure estimation method, experiments were carried out on small sized stainless steel cylinders containing a circumferential surface and a through-wall crack, taking into consideration the combined tensile and torsion loads. Based on the experimental results, the proposed failure estimation method is verified for cracked pipes subjected to multi-axial loads.


Author(s):  
Young Seok Kim ◽  
Jung Kwang Yoon ◽  
Young Ho Kim

This paper proposes an analysis method for Section III, Division 1, Class 3 buried High Density polyethylene (HDPE) piping system in the nuclear power plants (NPP). Although HDPE pipe would yield at high temperature (limited to 140°F), it may be suitable for the areas prone to earthquakes; owing to its comparable ductility and flexibility. Thus, the buried HDPE piping may be applicable for the safety related Essential Service Water (ESW) system in the NPPs. Despite some limitations to buried HDPE piping, the piping could be designed based on ASME Code Case [1]. Generally, codes and standards including ASME Code Case [1] do not provide load combinations for the design of both buried steel piping and HDPE piping. Meanwhile, EPRI Report [4] provides load combinations including thermal expansion effects and seismic loads with detailed seismic criteria for polyethylene pipe. In this paper, load cases and load combinations for buried HDPE piping are suggested for implementation of reference documents and a buried HDPE piping system is analyzed referring to EPRI Report [4] to evaluate stress, force, and moment using a piping stress analysis program. Additionally, this paper will recommend the design procedure in accordance with ASME Code Case [1] using an example of buried HDPE piping analysis. An investigation of soil spring coefficients and the design considerations for hydrostatic tests are suggested for the enhanced analysis of buried HDPE piping.


Sign in / Sign up

Export Citation Format

Share Document