scholarly journals Headspace Gas Evaluation of Welded Plutonium Storage Containers

Author(s):  
Bruce J. Hardy ◽  
Stephen P. Harris ◽  
Matthew J. Arnold ◽  
Stephen J. Hensel

The Can Puncture Device (CPD) serves as a containment vessel during the puncture of nested 3013 containers as part of surveillance operations in K-Area. The purpose of the CPD sampling process is to determine the original pressure and composition of gasses within the inner 3013 container. The relation between the composition of the gas sample drawn from the CPD and that originally in the inner 3013 container depends on the degree of mixing that occurs over the interval of time from the puncture to drawing the sample. Gas mixing is bounded by the extremes of no mixing of gases in the inner container and that of complete mixing, in which case the entire CPD system is of uniform composition. Models relating the sample composition and pressure to the initial (pre-puncture) inner can composition and pressure for each of these extremes were developed. Predictions from both models were compared to data from characterization experiments. In the comparison, it was found that the model that assumed complete gas mixing after puncture, the Uniform Mixing Model, showed significantly better agreement with the data than the model that assumed no change in the composition of the inner container, referred to as the Non-Uniform Mixing Model. Both models were implemented as Microsoft® Excel spreadsheet calculations, which utilize macros, to include the effects of uncertainties and biases in the measurements of process parameters and in the models. Potential inleakage of gas from the glovebox is also addressed. The spreadsheet utilizing the Uniform Mixing Model, which was validated by data from the characterization tests, is used to evaluate the pre-puncture composition and pressure within the inner 3013 container. This spreadsheet model is called the Gas Evaluation Software Tool (GEST).

Author(s):  
T. Frederking ◽  
R. Gadow

Abstract Total quality management requires definite process control as well as online diagnostics, if applied in industrial surface refinement by thermal spraying. A concept for integrated online diagnostics for the high velocity oxygen fuel (HVOF) flame spray process is presented using Siemens S7-300 programmable logic controller and PC-based Siemens WinCC (Windows Control Center) visualization software. The standard functionality of the WinCC programming environment can be extended by C-scripts. The integrated database allows to protocol the relevant process parameters periodically for total quality assurance. Also particle flux imaging software tools can be implemented to adjust online process parameters and for process diagnostic purposes. The Siemens bus system hierarchy thereby provides high speed communication skills for field bus level data exchange and for supervising system components, e.g. CCD-cameras. The interconnection between S7-300 PLC, 6-axis-robot and a novel WinCC software tool enables definite automatic changes of recipes during the coating process to generate functionally graded coatings.


Manufacturing ◽  
2003 ◽  
Author(s):  
William C. S. Weir ◽  
Richard D. Sisson ◽  
Sudhangshu Bose

A model was developed to predict the thickness of the thermal barrier coating (TBC) applied to specific points on a rotating PW4000 second stage turbine blade using electron beam physical vapor deposition (EB-PVD). The theoretical model of coating deposition rates as a function of position in the PVD vapor cloud (Knudsen cosine law) was experimentally verified. The experimental work consisted of a series of four turbine blades coated under various coating conditions. Based on the verified model, a UniGraphics (UG) CAD model of the process was built. A UG User Function (UFunc) was programmed to predict coating thickness for a wide variety of EB-PVD process parameters to populate a database of contoured coating profiles. A software tool was then developed to specify the manufacturing process parameters to fabricate a contoured EB-PVD TBC of partially stabilized zirconia. A coating profile matching routine was included in the software to identify the process parameters closest to the desired coating profile. The focus of this paper is on the experimental methods, the CAD model and the software tool.


Author(s):  
H.J. Zuo ◽  
M.W. Price ◽  
R.D. Griffin ◽  
R.A. Andrews ◽  
G.M. Janowski

The II-VI semiconducting alloys, such as mercury zinc telluride (MZT), have become the materials of choice for numerous infrared detection applications. However, compositional inhomogeneities and crystallographic imperfections adversly affect the performance of MZT infrared detectors. One source of imperfections in MZT is gravity-induced convection during directional solidification. Crystal growth experiments conducted in space should minimize gravity-induced convection and thereby the density of related crystallographic defects. The limited amount of time available during Space Shuttle experiments and the need for a sample of uniform composition requires the elimination of the initial composition transient which occurs in directionally solidified alloys. One method of eluding this initial transient involves directionally solidifying a portion of the sample and then quenching the remainder prior to the space experiment. During the space experiment, the MZT sample is back-melted to exactly the point at which directional solidification was stopped on earth. The directional solidification process then continues.


2007 ◽  
Vol 211 (S 1) ◽  
Author(s):  
H Proquitté ◽  
O Freiberger ◽  
S Yilmaz ◽  
H Hammer ◽  
G Schmalisch ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document